A Thermodynamic Approach to Selecting Alternative Gate Dielectrics

As a first step in the identification of suitable alternative gate dielectrics for metal oxide semiconductor field-effect transistors (MOSFETs), we have used tabulated thermodynamic data to comprehensively assess the thermodynamic stability of binary oxides and nitrides in contact with silicon at temperatures from 300 K to 1600 K. Sufficient data exist to conclude that the vast majority of binary oxides and nitrides are thermodynamically unstable in contact with silicon. The dielectrics that remain are candidate materials for alternative gate dielectrics. Of these remaining candidates, the oxides have a significantly higher dielectric constant ( ĸ ) than the nitrides. We then extend this thermodynamic approach to multicomponent oxides comprising the candidate binary oxides. The result is a relatively small number of silicon-compatible gate dielectric materials with ĸ values substantially greater than that of SiO 2 and optical bandgaps ≥ eV.

[1]  Ki-Bum Kim,et al.  Phase equilibria in metal‐gallium‐arsenic systems: Thermodynamic considerations for metallization materials , 1987 .

[2]  A. Goodman PHOTOEMISSION OF ELECTRONS AND HOLES INTO SILICON NITRIDE , 1968 .

[3]  R. Beyers,et al.  Phase equilibria in thin‐film metallizations , 1984 .

[4]  Robert Beyers,et al.  Thermodynamic considerations in refractory metal-silicon-oxygen systems , 1984 .

[5]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[6]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[7]  J. Panitz,et al.  Radio‐frequency‐sputtered tetragonal barium titanate films on silicon , 1979 .

[8]  W. B. Pennebaker RF sputtered strontium titanate films , 1969 .

[9]  D. Kwong,et al.  Effects of vacuum and inert gas annealing of ultrathin tantalum pentoxide films on Si(100) , 1999 .

[10]  David J. Jones,et al.  Temperature dependence of the electronic structure of oxides: {MgO}, {MgAl} , 1990 .

[11]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .

[12]  David A. Muller,et al.  Properties of high κ gate dielectrics Gd2O3 and Y2O3 for Si , 2001 .

[13]  Shik Shin,et al.  Optical absorption spectra of acceptor-doped SrZrO3 and SrTiO3 perovskite-type proton conductors , 1996 .

[14]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[15]  E. P. Gusev,et al.  Intermixing at the tantalum oxide/silicon interface in gate dielectric structures , 1998 .

[16]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[17]  Dim-Lee Kwong,et al.  Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) , 2001 .

[18]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[19]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[20]  George A. Samara,et al.  Low‐temperature dielectric properties of candidate substrates for high‐temperature superconductors: LaAlO3 and ZrO2 : 9.5 mol % Y2O3 , 1990 .

[21]  H. Yamaguchi,et al.  Reactive Coevaporation Synthesis and Characterization of SrTiO3 Thin Films , 1991 .

[22]  D. Eastman,et al.  The band edge of amorphous SiO2 by photoinjection and photoconductivity measurements , 1971 .

[23]  D. Fork,et al.  Reactions at the interfaces of thin films of Y‐Ba‐Cu‐ and Zr‐oxides with Si substrates , 1991 .

[24]  W. C. Walker,et al.  Electronic spectrum and ultraviolet optical properties of crystalline MgO. , 1967 .

[25]  T. Furuta,et al.  Preparation and Properties of Ta2 O 5 Films by LPCVD for ULSI Application , 1990 .

[26]  Joachim Wecker,et al.  Orientation relationships of epitaxial oxide buffer layers on silicon (100) for high‐temperature superconducting YBa2Cu3O7−x films , 1992 .

[27]  S. Yamamichi,et al.  Barrier layers for realization of high capacitance density in SrTiO3 thin‐film capacitor on silicon , 1990 .

[28]  S. Gonda,et al.  Heteroepitaxial Growth of CeO2(001) Films on Si(001) Substrates by Pulsed Laser Deposition in Ultrahigh Vacuum , 1991 .

[29]  George A. Brown,et al.  Electrical Characteristics of Silicon Nitride Films Prepared by Silane‐Ammonia Reaction , 1968 .

[30]  I. Barin Thermochemical data of pure substances , 1989 .

[31]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[32]  G. Samsonov,et al.  The Oxide Handbook , 1973 .

[33]  H. Osten,et al.  Epitaxial growth of Pr2O3 on Si(111) and the observation of a hexagonal to cubic phase transition during postgrowth N2 annealing , 2001 .

[34]  K. Samwer,et al.  XPS study of the interface reactions between buffer layers for HTSC thin films and silicon , 1992 .

[35]  V. Misra,et al.  Electrical properties of Ru and RuO2 gate electrodes for Si-PMOSFET with ZrO2 and Zr-silicate dielectrics , 2001 .

[36]  Jeffrey T. Roberts,et al.  Low Temperature CVD of Crystalline Titanium Dioxide Films Using Tetranitratotitanium(IV , 1998 .

[37]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[38]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[39]  H. H. Tippins Absorption edge spectrum of scandium oxide , 1966 .