Evaluation and Normalization of Topographic Effects on Vegetation Indices

[1]  Craig A. Coburn,et al.  SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[3]  Binbin He,et al.  Modified enhanced vegetation index for reducing topographic effects , 2015 .

[4]  Hari Adhikari,et al.  The effect of topographic normalization on fractional tree cover mapping in tropical mountains: An assessment based on seasonal Landsat time series , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[5]  John R. Dymond,et al.  Correction of the topographic effect in remote sensing , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Jesús Álvarez-Mozos,et al.  Multi-criteria evaluation of topographic correction methods , 2016 .

[7]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[8]  C. Field,et al.  Canopy near-infrared reflectance and terrestrial photosynthesis , 2017, Science Advances.

[9]  Qinhuo Liu,et al.  PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction , 2018, Remote Sensing of Environment.

[10]  C. Justice,et al.  An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data , 1981 .

[11]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[12]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[13]  Lei Ma,et al.  Topographic Correction for Landsat 8 OLI Vegetation Reflectances Through Path Length Correction: A Comparison Between Explicit and Implicit Methods , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Hermann Kaufmann,et al.  Comparison of Topographic Correction Methods , 2009, Remote. Sens..

[15]  Emilio Chuvieco,et al.  International Journal of Applied Earth Observation and Geoinformation , 2011 .

[16]  R. Lunetta,et al.  A change detection experiment using vegetation indices. , 1998 .

[17]  Laura F. Gentry,et al.  Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data , 2020 .

[18]  Wei Zhao,et al.  Path Length Correction for Improving Leaf Area Index Measurements Over Sloping Terrains: A Deep Analysis Through Computer Simulation , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[19]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[20]  Bunkei Matsushita,et al.  Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest , 2007, Sensors.

[21]  Qiang Liu,et al.  Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments , 2018, Remote. Sens..

[22]  Hui Fan,et al.  Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI data , 2016 .

[23]  Ainong Li,et al.  Modeling Canopy Reflectance Over Sloping Terrain Based on Path Length Correction , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Jefferson Fox,et al.  Assessing the spatial, spectral, and temporal consistency of topographically corrected Landsat time series composites across the mountainous forests of Nepal , 2019, Remote Sensing of Environment.