Error analysis of an enhanced DtN-FE method for exterior scattering problems

In this work we analyze the convergence of the high-order Enhanced DtN-FEM algorithm, described in our previous work (Nicholls and Nigam, J. Comput. Phys. 194:278–303, 2004), for solving exterior acoustic scattering problems in $${\mathbf{R}^{2}}$$ . This algorithm consists of using an exact Dirichlet-to-Neumann (DtN) map on a hypersurface enclosing the scatterer, where the hypersurface is a perturbation of a circle, and, in practice, the perturbation can be very large. Our theoretical work had shown the DtN map was analytic as a function of this perturbation. In the present work, we carefully analyze the error introduced by virtue of using this algorithm. Specifically, we give a full account of the error introduced by truncating the DtN map at a finite order in the perturbation expansion, and study the well-posedness of the associated formulation. During computation, the Fourier series of the Dirichlet data on the artificial boundary must be truncated. To deal with the ensuing loss of uniqueness of solutions, we propose a modified DtN map, and prove well-posedness of the resulting problem. We quantify the spectral error introduced due to this truncation of the data. The key tools in the analysis include a new theorem on the analyticity of the DtN map in a suitable Sobolev space, and another on the perturbation of non-self-adjoint Fredholm operators.

[1]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[2]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[3]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[4]  A. Calderón,et al.  Cauchy integrals on Lipschitz curves and related operators. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[6]  Walter Craig,et al.  The modulational regime of three-dimensional water waves and the Davey-Stewartson system , 1997 .

[7]  G. Barrenechea,et al.  On the numerical analysis of finite element and dirichlet-to-neumann methods for nonlinear exterior transmission problems , 1998 .

[8]  Jan S. Hesthaven,et al.  Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..

[9]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[10]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[11]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[12]  Fernando Reitich,et al.  Stability of High-Order Perturbative Methods for the Computation of Dirichlet-Neumann Operators , 2001 .

[13]  Nilima Nigam,et al.  Exact Non-reflecting Boundary Conditions on General Domains , 2022 .

[14]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[15]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[16]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[17]  Rabia Djellouli,et al.  FINITE ELEMENT SOLUTION OF TWO-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS USING ARBITRARILY SHAPED CONVEX ARTIFICIAL BOUNDARIES , 2000 .

[18]  Leszek F. Demkowicz,et al.  Analysis of a coupled finite-infinite element method for exterior Helmholtz problems , 2001, Numerische Mathematik.

[19]  Fernando Reitich,et al.  A new approach to analyticity of Dirichlet-Neumann operators , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Ivan G. Graham,et al.  A high-order algorithm for obstacle scattering in three dimensions , 2004 .

[22]  José M. Galán,et al.  Nonreflecting Boundary Conditions for the Nonlinear , 2005 .

[23]  T. Ushijima An FEM-CSM combined method for planar exterior Laplace problems , 2001 .

[24]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[25]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[26]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[27]  G. Hsiao,et al.  Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings , 1998 .

[28]  D. Givoli Non-reflecting boundary conditions , 1991 .

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  D. Givoli,et al.  Nonreflecting boundary conditions based on Kirchhoff-type formulae , 1995 .

[31]  Bei Hu,et al.  Analyticity of Dirichlet-Neumann Operators on Hölder and Lipschitz Domains , 2005, SIAM J. Math. Anal..

[32]  Ronald R. Coifman,et al.  Nonlinear harmonic analysis and analytic dependence , 1985 .

[33]  P. Guidotti A new first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D , 2003 .

[34]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[35]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[36]  Walter Craig,et al.  Traveling Two and Three Dimensional Capillary Gravity Water Waves , 2000, SIAM J. Math. Anal..

[37]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[38]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[39]  Fernando Reitich,et al.  Digital Object Identifier (DOI) 10.1007/s002110200399 Analytic continuation of Dirichlet-Neumann operators , 2022 .

[40]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[41]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[42]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[43]  Calvin H. Wilcox,et al.  Scattering Theory for the d'Alembert Equation in Exterior Domains , 1975 .

[44]  G. Folland Introduction to Partial Differential Equations , 1976 .

[45]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .