Robustness of the posterior mean in normal hierarchical models
暂无分享,去创建一个
[1] James O. Berger,et al. Selecting a Minimax Estimator of a Multivariate Normal Mean , 1982 .
[2] J. Berger. A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .
[3] J. Berger. Bayesian Robustness and the Stein Effect , 1982 .
[4] C. Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .
[5] J. Berger,et al. Ranges of posterior measures for priors with unimodal contaminations , 1989 .
[6] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[7] Minimaxity of Empirical Bayes Estimators Derived from Subjective Hyperpriors , 1987 .
[8] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[9] Juan Antonio Cano,et al. Robust Bayesian Analysis with ϵ‐Contaminations Partially Known , 1991 .
[10] Ward Edwards,et al. Bayesian statistical inference for psychological research. , 1963 .
[11] Estimation of Normal Means: Frequentist Estimation of Loss , 1989 .
[12] L. M. Berliner,et al. Robust Bayes and Empirical Bayes Analysis with $_\epsilon$-Contaminated Priors , 1986 .
[13] J. Berger. Robust Bayesian analysis : sensitivity to the prior , 1990 .
[14] J. Berger. Minimax estimation of a multivariate normal mean under arbitrary quadratic loss , 1976 .
[15] James O. Berger,et al. Subjective Hierarchical Bayes Estimation of a Multivariate Normal Mean: On the Frequentist Interface , 1990 .
[16] J. Hartigan,et al. Bayesian Inference Using Intervals of Measures , 1981 .