Multisource and Battery-Free Energy Harvesting Architecture for Aeronautics Applications

We suggest an innovative architecture for an efficient energy generator devoted to the powering of a wireless sensor network deployed for aircraft health monitoring. This battery-free generator captures energy from its environment (transient thermal gradients as a main source, and vibrations as a secondary source allowing early biasing of the generator) and stores this energy in ultracapacitors. In this way, this multisource architecture benefits from the synergy between energy scavenging and harvesting: vibrations bring low but early and permanent energy. They also contribute to energy harvesting during cruise while thermal gradients have vanished. The use of active diodes and of a very low bias current of 10 nA/branch allow achieving ultralow power consumption, experimentally demonstrated on two different CMOS technologies. It is also proven that enough energy could be delivered to power the functions of a wireless sensor node.

[1]  Enrico Dallago,et al.  Comparison of Two Autonomous AC-DC Converters for Piezoelectric Energy Scavenging Systems , 2008, VLSI-SoC.

[2]  Jean-Marie Dilhac,et al.  Proof of concept of energy harvesting from aero acoustic noise , 2012 .

[3]  Julien Penders,et al.  Energy Harvesting for Autonomous Wireless Sensor Networks , 2010, IEEE Solid-State Circuits Magazine.

[4]  Pedro Lluís Miribel-Català,et al.  A Multiharvested Self-Powered System in a Low-Voltage Low-Power Technology , 2011, IEEE Transactions on Industrial Electronics.

[5]  Carole Rossi,et al.  Convertisseur à faible consommation pour la récupération d'énergie ambiante combinant deux sources pour application aéronautique , 2009 .

[6]  J.-M. Dilhac,et al.  Design of a Solar Harvester System for a Wireless Sensor Network Deployed for Large Aircraft In-Flight Tests , 2012 .

[7]  Jordi Colomer-Farrarons,et al.  A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach , 2011 .

[8]  Ulrich Schmid,et al.  Energy harvesting for autonomous wireless sensor nodes in aircraft , 2010 .

[9]  Eric M. Yeatman,et al.  Heat Storage Power Supply for Wireless Aircraft Sensors , 2012 .

[10]  Pablo Aguirre,et al.  Ultra-low Power CMOS Cells for Temperature Sensors , 2005, 2005 18th Symposium on Integrated Circuits and Systems Design.

[11]  Christian Piguet,et al.  Bringing Robustness and Power Efficiency to Autonomous Energy-Harvesting Microsystems , 2011, IEEE Des. Test Comput..

[12]  Jean-Marie Dilhac,et al.  Charge and discharge performance of secondary batteries according to extreme environment temperatures , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[13]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[14]  Patrick Audebert,et al.  Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage , 2007, IEEE Journal of Solid-State Circuits.

[15]  Jean-Marie Dilhac,et al.  ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING OF AIRCRAFTS , 2008 .

[16]  Hugo Durou,et al.  Vers l'autonomie énergétique des réseaux de capteurs embarqués : conception et intégration d'un générateur piézoélectrique et d'un micro dispositif de stockage capacitif en technologie silicium , 2010 .

[17]  D. Guyomar,et al.  Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester , 2007, IEEE Transactions on Power Electronics.

[18]  A. Ramond,et al.  Micromachined bulk PZT piezoelectric vibration harverster to improve effectiveness over low amplitude and low frequency vibrations , 2010 .

[19]  Yang Sun,et al.  An Integrated High-Performance Active Rectifier for Piezoelectric Vibration Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[20]  Edith Beigné,et al.  Bringing Robustness and Power Efficiency to Autonomous Energy Harvesting Microsystems , 2010, 2010 IEEE Symposium on Asynchronous Circuits and Systems.

[21]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.