Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF

[1]  T. Münch,et al.  Relevance of Exocytotic Glutamate Release from Retinal Glia , 2012, Neuron.

[2]  S. Hauck,et al.  Osteopontin and Fibronectin Levels Are Decreased in Vitreous of Autoimmune Uveitis and Retinal Expression of Both Proteins Indicates ECM Re-Modeling , 2011, PloS one.

[3]  A. Reichenbach,et al.  Activation of voltage-gated Na+ and Ca2+ channels is required for glutamate release from retinal glial cells implicated in cell volume regulation , 2011, Neuroscience.

[4]  X. Lu,et al.  Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. , 2011, European journal of cell biology.

[5]  John H. Zhang,et al.  Effects of recombinant osteopontin on blood-brain barrier disruption after subarachnoid hemorrhage in rats. , 2011, Acta neurochirurgica. Supplement.

[6]  B. Arango-Gonzalez,et al.  GDNF‐induced osteopontin from Müller glial cells promotes photoreceptor survival in the Pde6brd1 mouse model of retinal degeneration , 2011, Glia.

[7]  A. Reichenbach,et al.  Synergistic action of hypoosmolarity and glutamine in inducing acute swelling of retinal glial (Müller) cells , 2011, Glia.

[8]  H. Aburatani,et al.  Identification of CD44 as a cell surface marker for Müller glia precursor cells , 2010, Journal of neurochemistry.

[9]  J. Kremers,et al.  Changes of osteopontin in the aqueous humor of the DBA2/J glaucoma model correlated with optic nerve and RGC degenerations. , 2010, Investigative ophthalmology & visual science.

[10]  T. Schöneberg,et al.  Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells , 2010, Journal of neurochemistry.

[11]  A. Reichenbach,et al.  Erythropoietin inhibits osmotic swelling of retinal glial cells by Janus kinase- and extracellular signal-regulated kinases1/2-mediated release of vascular endothelial growth factor , 2010, Neuroscience.

[12]  N. Osborne,et al.  Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects , 2009, Progress in Retinal and Eye Research.

[13]  A. Reichenbach,et al.  Involvement of A1 adenosine receptors in osmotic volume regulation of retinal glial cells in mice , 2009, Molecular vision.

[14]  A. Reichenbach,et al.  Purinergic signaling in special senses , 2009, Trends in Neurosciences.

[15]  A. Reichenbach,et al.  Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ , 2008, Journal of neurochemistry.

[16]  M. Bähr,et al.  The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS , 2008, Cell Death and Differentiation.

[17]  N. Osborne,et al.  Expression of osteopontin in the rat retina: effects of excitotoxic and ischemic injuries. , 2008, Investigative ophthalmology & visual science.

[18]  A. Reichenbach,et al.  Glial cell‐derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGF , 2007, Journal of neurochemistry.

[19]  D. Clegg,et al.  Osteopontin is proinflammatory in experimental autoimmune uveitis. , 2006, Investigative ophthalmology & visual science.

[20]  Peter Wiedemann,et al.  Müller cells in the healthy and diseased retina , 2006, Progress in Retinal and Eye Research.

[21]  M. Ueffing,et al.  GDNF Family Ligands Trigger Indirect Neuroprotective Signaling in Retinal Glial Cells , 2006, Molecular and Cellular Biology.

[22]  A. Reichenbach,et al.  Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: Activation by neuropeptide Y , 2006, Journal of neuroscience research.

[23]  A. Reichenbach,et al.  Tandem‐pore domain potassium channels are functionally expressed in retinal (Müller) glial cells , 2006, Glia.

[24]  A. Reichenbach,et al.  The Glucocorticoid Triamcinolone Acetonide Inhibits Osmotic Swelling of Retinal Glial Cells via Stimulation of Endogenous Adenosine Signaling , 2005, Journal of Pharmacology and Experimental Therapeutics.

[25]  A. Reichenbach,et al.  Neuronal versus glial cell swelling in the ischaemic retina. , 2005, Acta ophthalmologica Scandinavica.

[26]  Ortrud Uckermann,et al.  Glutamate-Evoked Alterations of Glial and Neuronal Cell Morphology in the Guinea Pig Retina , 2004, The Journal of Neuroscience.

[27]  Peter Wiedemann,et al.  Pathomechanisms of Cystoid Macular Edema , 2004, Ophthalmic Research.

[28]  P. Carmeliet,et al.  VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  A. Reichenbach,et al.  A potassium channel-linked mechanism of glial cell swelling in the postischemic retina , 2004, Molecular and Cellular Neuroscience.

[30]  T. Harada,et al.  Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration , 2003, Neuroscience.

[31]  E. Vecino,et al.  Role of Müller glia in neuroprotection and regeneration in the retina. , 2003, Histology and histopathology.

[32]  Eric A Newman,et al.  Glial Cell Inhibition of Neurons by Release of ATP , 2003, The Journal of Neuroscience.

[33]  Sucharita Das,et al.  Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. , 2002, Experimental eye research.

[34]  Bernd Biedermann,et al.  Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering † , 2002, Glia.

[35]  C. Grimm,et al.  HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration , 2002, Nature Medicine.

[36]  I. Narita,et al.  Expression, roles, receptors, and regulation of osteopontin in the kidney. , 2001, Kidney international.

[37]  P. Kuo,et al.  Osteopontin Is a Negative Feedback Regulator of Nitric Oxide Synthesis in Murine Macrophages1 , 2001, The Journal of Immunology.

[38]  C. Giachelli,et al.  Osteopontin: a versatile regulator of inflammation and biomineralization. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[39]  S. Okuyama,et al.  Modification of Glial–Neuronal Cell Interactions Prevents Photoreceptor Apoptosis during Light-Induced Retinal Degeneration , 2000, Neuron.

[40]  M. Sy,et al.  Regulation of no synthesis induced by inflammatory mediators in RAW264.7 cells: collagen prevents inhibition by osteopontin. , 2000, Cytokine.

[41]  N. Agarwal,et al.  Upregulation of CD44 expression in the retina during the rds degeneration. , 2000, Brain research. Molecular brain research.

[42]  P. Campochiaro,et al.  Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. , 2000, Investigative ophthalmology & visual science.

[43]  Keun-Young Kim,et al.  Ganglion cells of the rat retina show osteopontin-like immunoreactivity , 2000, Brain Research.

[44]  A. Dmitriev,et al.  Light-induced changes of extracellular ions and volume in the isolated chick retina–pigment epithelium preparation , 1999, Visual Neuroscience.

[45]  J. Gidday,et al.  The purine nucleoside adenosine in retinal ischemia-reperfusion injury , 1999, Vision Research.

[46]  M. Chaitin,et al.  Immunolocalization of CD44 in the dystrophic rat retina. , 1998, Experimental eye research.

[47]  K. Zahs,et al.  Modulation of Neuronal Activity by Glial Cells in the Retina , 1998, The Journal of Neuroscience.

[48]  S. Nawy,et al.  Role of the low-affinity NGF receptor (p75) in survival of retinal bipolar cells , 1998, Visual Neuroscience.

[49]  S. Roth,et al.  Adenosine receptor blockade and nitric oxide synthase inhibition in the retina: Impact upon post-ischemic hyperemia and the electroretinogram , 1997, Vision Research.

[50]  N. Osborne,et al.  Involvement of adenosine in retinal ischemia. Studies on the rat. , 1996, Investigative ophthalmology & visual science.

[51]  D. Laskin,et al.  Osteopontin inhibits nitric oxide production and cytotoxicity by activated RAW264.7 macrophages , 1996, Journal of leukocyte biology.

[52]  M. T. Ankrum,et al.  Distribution of CD44 in the retina during development and the rds degeneration. , 1996, Brain research. Developmental brain research.

[53]  A. Rothova,et al.  Causes and frequency of blindness in patients with intraocular inflammatory disease. , 1996, The British journal of ophthalmology.

[54]  M. Glimcher,et al.  Receptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1) , 1996, Science.

[55]  M. Chaitin,et al.  Immunocytochemical localization of CD44 in the mouse retina. , 1994, Experimental eye research.

[56]  F. Dudek,et al.  Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: Importance of non-synaptic mechanisms in hippocampal epileptogenesis , 1990, Neuroscience Letters.

[57]  K. Altendorf,et al.  Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Bresnick Diabetic maculopathy. A critical review highlighting diffuse macular edema. , 1983, Ophthalmology.

[59]  A. Reichenbach,et al.  Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. , 2011, Experimental eye research.

[60]  T. Yasuhara,et al.  The Potential Role of Vascular Endothelial Growth Factor in the Central Nervous System , 2004, Reviews in the neurosciences.

[61]  A. Reichenbach,et al.  Changes in CD44 and ApoE immunoreactivities due to retinal pathology of man and rat. , 1997, Journal fur Hirnforschung.

[62]  N. Osborne,et al.  Involvement of Adenosine in Retinal Ischemia , 1996 .

[63]  M. Lavail,et al.  Injury-induced upregulation of bFGF and CNTF mRNAS in the rat retina. , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  U. Heinemann,et al.  Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain , 1989, Glia.