Silica coated, water dispersible and photoluminescent Y (V,P)O4:Eu3+,Bi3+ nanophosphors

We propose an approach for silica encapsulation of YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+) nanophosphors through a microemulsion process. The resulting YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+)@SiO(2) core-shell nanophosphors were characterized by transmission electron microscopy, UV/vis absorption and photoluminescence spectroscopy, energy-dispersive x-ray analysis (EDAX), selected area electron diffraction and zeta-potential measurements. The obtained nanocomposites have quite a uniform spherical shape and diameters of about 15 nm. Zeta-potential measurements show that coated particles are stable at high volume fractions and can endure large variations in pH and electrolyte concentration without coalescence. These core-shell nanophosphors could also be used as ultrasensitive biological labels, because they are obtained in nanoscale and well dispersible in water.

[1]  Zuyao Chen,et al.  Synthesis of α-Fe ultrafine particles in a saturated salt solution/isopropanol/PVP microemulsion and their structural characterization , 2000 .

[2]  Yoshio Kobayashi,et al.  Silica-coating of AgI semiconductor nanoparticles , 2004 .

[3]  L. Yanhong,et al.  Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+ , 2005 .

[4]  Chunhua Yan,et al.  Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals , 2003 .

[5]  T. Jin,et al.  Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical solution deposition , 2004 .

[6]  T. Nann,et al.  A facile method for coding and labeling assays on polystyrene beads with differently colored luminescent nanocrystals , 2006, Analytical and bioanalytical chemistry.

[7]  Thomas Nann,et al.  Single quantum dots in spherical silica particles. , 2004, Angewandte Chemie.

[8]  Jooho Moon,et al.  Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique , 1999 .

[9]  Timothy Thatt Yang Tan,et al.  Robust, Non‐Cytotoxic, Silica‐Coated CdSe Quantum Dots with Efficient Photoluminescence , 2005 .

[10]  Weihong Tan,et al.  TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. , 2004, Chemical communications.

[11]  J. Boilot,et al.  Synthesis and Characterizations of YVO4:Eu Colloids , 2002 .

[12]  H. Akinaga,et al.  Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles. , 2005, The journal of physical chemistry. B.

[13]  M. Haase,et al.  WET-CHEMICAL SYNTHESIS OF DOPED COLLOIDAL NANOPARTICLES : YVO4:LN (LN = EU, SM, DY) , 1998 .

[14]  M. Pileni,et al.  Reverse micelles as microreactors , 1993 .

[15]  L. Rossi,et al.  Stöber synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  Paul Mulvaney,et al.  Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations , 2004 .

[17]  Shik Chi Tsang,et al.  Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. , 2003, Chemical communications.

[18]  K. Uematsu,et al.  Preparation of YVO4:Eu3+ phosphor using microwave heating method , 2005 .

[19]  T. Nann,et al.  One-pot synthesis of YF3@silica core/shell nanoparticles. , 2006, Chemical communications.

[20]  F. Weill,et al.  Nano-ferroelectric based core–shell particles: towards tuning of dielectric properties , 2004 .

[21]  J. Boilot,et al.  Emission Processes in YVO4:Eu Nanoparticles , 2003 .

[22]  T. Hirai,et al.  Immobilization of Semiconductor Nanoparticles Formed in Reverse Micelles into Polyurea via In Situ Polymerization of Diisocyanates , 1998 .

[23]  Z. J. Zhang,et al.  Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core , 2003 .

[24]  Q. Xin,et al.  Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method , 2004 .

[25]  Guoxing Xiong,et al.  Preparation of CdS–SiO2 core-shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions , 2004 .

[26]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[27]  M. Haase,et al.  Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes , 2001 .

[28]  Yoshio Kobayashi,et al.  Silica coating of silver nanoparticles using a modified Stober method. , 2005, Journal of colloid and interface science.

[29]  W. Tan,et al.  Biochemically functionalized silica nanoparticles. , 2001, The Analyst.

[30]  J. Lin,et al.  Morphology control and luminescence properties of YVO4:Eu phosphors prepared by spray pyrolysis , 2005 .

[31]  John V Frangioni,et al.  Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. , 2006, Journal of the American Chemical Society.

[32]  D. Jeon,et al.  Correlation of photoluminescence of (Y, Ln)VO4:Eu3+ (Ln=Gd and La) phosphors with their crystal structures , 2005 .

[33]  J. Boilot,et al.  Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors , 2000 .

[34]  T. Nann,et al.  Single Quantum Dots in Silica Spheres by Microemulsion Synthesis , 2005 .