Stochastic modelling of animal movement

Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal ‘settling down’, accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.

[1]  Monica G. Turner,et al.  Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes , 2005, Landscape Ecology.

[2]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[3]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[4]  Wayne M. Getz,et al.  A local nearest-neighbor convex-hull construction of home ranges and utilization distributions , 2004 .

[5]  Bryan F. J. Manly,et al.  Assessing habitat selection when availability changes , 1996 .

[6]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[7]  D. Macdonald,et al.  Scale‐free dynamics in the movement patterns of jackals , 2002 .

[8]  Sergei Petrovskii,et al.  Dispersal in a Statistically Structured Population: Fat Tails Revisited , 2008, The American Naturalist.

[9]  W. V. Winkle COMPARISON OF SEVERAL PROBABILISTIC HOME-RANGE MODELS' , 1975 .

[10]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[11]  D. DeAngelis,et al.  Individual-based modeling of ecological and evolutionary processes , 2005 .

[12]  Norman L Carreck,et al.  Honeybees perform optimal scale-free searching flights when attempting to locate a food source , 2007, Journal of Experimental Biology.

[13]  Christian Rutz,et al.  New frontiers in biologging science , 2009, Biology Letters.

[14]  Germinal Cocho,et al.  Scale-free foraging by primates emerges from their interaction with a complex environment , 2006, Proceedings of the Royal Society B: Biological Sciences.

[15]  G. Viswanathan,et al.  Lévy flights and superdiffusion in the context of biological encounters and random searches , 2008 .

[16]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[17]  D. Sims,et al.  Minimizing errors in identifying Lévy flight behaviour of organisms. , 2007, The Journal of animal ecology.

[18]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[19]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[20]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[21]  Daniel Fortin,et al.  Adaptive models for large herbivore movements in heterogeneous landscapes , 2005, Landscape Ecology.

[22]  Henrik Renlund,et al.  Reinforced Random Walk , 2005 .

[23]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[24]  P. Moorcroft,et al.  Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis , 2007, Journal of mathematical biology.

[25]  J. F. Gilliam,et al.  MODELING DIFFUSIVE SPREAD IN A HETEROGENEOUS POPULATION: A MOVEMENT STUDY WITH STREAM FISH , 2000 .

[26]  Simon A. Levin,et al.  A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen , 1989 .

[27]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[28]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[29]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[30]  Laura A. Kelley,et al.  Explanations for variation in cognitive ability: Behavioural ecology meets comparative cognition , 2009, Behavioural Processes.

[31]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[32]  J. Harper Population Biology of Plants , 1979 .

[33]  Eugene P. Odum,et al.  Measurement of territory and home range size in birds , 1955 .

[34]  R. Menzel,et al.  Two spatial memories for honeybee navigation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Jianguo Liu,et al.  Individual-Based Modeling , 2002 .

[36]  Jacqueline L. Frair,et al.  Building the bridge between animal movement and population dynamics , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[38]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[39]  Patrick J Butler,et al.  Biotelemetry: a mechanistic approach to ecology. , 2004, Trends in ecology & evolution.

[40]  Jacqui Frair,et al.  The attraction of the known: the importance of spatial familiarity in habitat selection in wapiti Cervus elaphus , 2009 .

[41]  S. Levin,et al.  Superdiffusion and encounter rates in diluted, low dimensional worlds , 2008 .

[42]  W. F. Blair,et al.  Notes on Home Ranges and Populations of the Short‐Tailed Shrew , 1940 .

[43]  Richard Byrne,et al.  What wild primates know about resources: opening up the black box , 2007, Animal Cognition.

[44]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[45]  John Fieberg,et al.  Kernel density estimators of home range: smoothing and the autocorrelation red herring. , 2007, Ecology.

[46]  D. Kramer,et al.  Mechanistic Home Range Analysis.Monographs in Population Biology, Volume 43.ByPaul R Moorcroftand, Mark A Lewis.Princeton (New Jersey): Princeton University Press.$85.00 (hardcover); $39.50 (paper). xiii + 172 p + 16 pl; ill.; index. ISBN: 0‐691‐00927‐9 (hc); 0‐691‐00928‐7 (pb). 2006. , 2007 .

[47]  Bruce Page,et al.  SHORT-DURATION DAYTIME MOVEMENTS OF A COW HERD OF AFRICAN ELEPHANTS , 2007 .

[48]  S. Portnoy,et al.  Seed dispersal curves: Behavior of the tail of the distribution , 2005, Evolutionary Ecology.

[49]  R. L. Life-histories of Northern Animals: an Account of the Mammals of Manitoba , 1910, Nature.

[50]  Stanley M Tomkiewicz,et al.  Global positioning system and associated technologies in animal behaviour and ecological research , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  On a possible origin of the fat-tailed dispersal in population dynamics , 2008 .

[52]  M. A. Lewis,et al.  Modelling territoriality and wolf–deer interactions , 1993, Nature.

[53]  Marcos C. Santos,et al.  Dynamical robustness of Lévy search strategies. , 2003, Physical review letters.

[54]  A. James,et al.  On fitting power laws to ecological data , 2007 .

[55]  P. Moorcroft,et al.  Mechanistic home range analysis , 2006 .

[56]  Paul R Moorcroft,et al.  Mechanistic home range models and resource selection analysis: a reconciliation and unification. , 2006, Ecology.

[57]  Deborah A. Jenkins,et al.  Socially informed random walks: incorporating group dynamics into models of population spread and growth , 2008, Proceedings of the Royal Society B: Biological Sciences.

[58]  Alan A. Ager,et al.  Landscape-level movements of North American elk (Cervus elaphus): effects of habitat patch structure and topography , 2005, Landscape Ecology.

[59]  A. M. Edwards,et al.  Using likelihood to test for Lévy flight search patterns and for general power-law distributions in nature. , 2008, The Journal of animal ecology.

[60]  Francesca Cagnacci,et al.  The home-range concept: are traditional estimators still relevant with modern telemetry technology? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  A. Hofgaard,et al.  Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights , 2002 .

[62]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[63]  Paul R. Moorcroft,et al.  Home range analysis using a mechanistic home range model , 1999 .

[64]  William E. Grant,et al.  AI modelling of animal movements in a heterogeneous habitat , 1989 .

[65]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[66]  Paul G. Blackwell,et al.  Bayesian inference for Markov processes with diffusion and discrete components , 2003 .

[67]  S. Levin,et al.  The Ecology and Evolution of Seed Dispersal: A Theoretical Perspective , 2003 .

[68]  Peter Grassberger,et al.  Reinforced walks in two and three dimensions , 2008, 0807.1350.

[69]  P. Holgate Random walk models for animal behavior , 1971 .

[70]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[71]  Henri Weimerskirch,et al.  PREY DISTRIBUTION AND PATCHINESS: FACTORS IN FORAGING SUCCESS AND EFFICIENCY OF WANDERING ALBATROSSES , 2005 .

[72]  N. Emery Cognition, Evolution, and Behavior Cognition, Evolution, and Behavior. 2nd edn. By Sara J. Shettleworth. Oxford: Oxford University Press (2009). Pp. xiii+700. Price $59.95 paperback. , 2010, Animal Behaviour.

[73]  Dag Ø. Hjermann,et al.  Analyzing habitat selection in animals without well-defined home ranges , 2000 .

[74]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  John Travis,et al.  Do Wandering Albatrosses Care About Math? , 2007, Science.

[76]  Deborah Austin,et al.  Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator , 2004 .

[77]  B. Worton Kernel methods for estimating the utilization distribution in home-range studies , 1989 .

[78]  Mark S Boyce,et al.  Correlation and studies of habitat selection: problem, red herring or opportunity? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  C. Patlak Random walk with persistence and external bias , 1953 .

[80]  Frederic Bartumeus,et al.  Fractal reorientation clocks: Linking animal behavior to statistical patterns of search , 2008, Proceedings of the National Academy of Sciences.

[81]  A survey of random processes with reinforcement , 2007, math/0610076.

[82]  Stanislav Volkov,et al.  Phase transition in vertex-reinforced random walks on Z with non-linear reinforcement , 2006 .

[83]  S. L. Lima,et al.  Towards a behavioral ecology of ecological landscapes. , 1996, Trends in ecology & evolution.

[84]  A. Vlasak Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus) , 2005, Animal Cognition.

[85]  H. Preisler,et al.  Modeling animal movements using stochastic differential equations , 2004 .

[86]  R. Jennrich,et al.  Measurement of non-circular home range. , 1969, Journal of theoretical biology.

[87]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[88]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[89]  Steve Cherry,et al.  Modeling utilization distributions in space and time. , 2009, Ecology.

[90]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[91]  F. Cagnacci,et al.  Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  Arild O. Gautestad,et al.  Complex animal distribution and abundance from memory-dependent kinetics , 2006 .

[93]  N. Schmajuk,et al.  Latent learning, shortcuts and detours: a computational model , 2002, Behavioural Processes.

[94]  M. Lewis,et al.  Home range formation in wolves due to scent marking , 2002, Bulletin of mathematical biology.

[95]  W. H. Burt Territoriality and Home Range Concepts as Applied to Mammals , 1943 .

[96]  Jerzy Neyman,et al.  In Determinism in Science and New Demands on Statisticians , 1960 .

[97]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[98]  Otso Ovaskainen,et al.  HABITAT-SPECIFIC MOVEMENT PARAMETERS ESTIMATED USING MARK–RECAPTURE DATA AND A DIFFUSION MODEL , 2004 .

[99]  Aleksei V. Chechkin,et al.  Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion , 2007, Encyclopedia of Complexity and Systems Science.

[100]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[101]  Peter Turchin,et al.  Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers , 1991 .

[102]  Paul R Moorcroft,et al.  Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone , 2006, Proceedings of the Royal Society B: Biological Sciences.

[103]  D. Brillinger,et al.  An exploratory data analysis (EDA) of the paths of moving animals , 2004 .

[104]  A. N. Wilschut,et al.  Theoretical studies on animal orientation. III: A model for Kinesis , 1987 .

[105]  Daniel Grünbaum,et al.  Advection–diffusion equations for generalized tactic searching behaviors , 1999 .

[106]  Darcy R. Visscher,et al.  Memory keeps you at home: a mechanistic model for home range emergence , 2009 .

[107]  Hugh P. Possingham,et al.  A SPATIALLY EXPLICIT HABITAT SELECTION MODEL INCORPORATING HOME RANGE BEHAVIOR , 2005 .

[108]  Michael S. Mitchell,et al.  A mechanistic home range model for optimal use of spatially distributed resources , 2004 .

[109]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[110]  Lucas N Joppa,et al.  Understanding movement data and movement processes: current and emerging directions. , 2008, Ecology letters.

[111]  R. Bonduriansky,et al.  Eliminating autocorrelation reduces biological relevance of home range estimates , 1999 .

[112]  J. Fryxell,et al.  Are there general mechanisms of animal home range behaviour? A review and prospects for future research. , 2008, Ecology letters.

[113]  Miska Luoto,et al.  An Empirical Test of a Diffusion Model: Predicting Clouded Apollo Movements in a Novel Environment , 2008, The American Naturalist.

[114]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[115]  Stefano Focardi,et al.  Adaptive Lévy Walks in Foraging Fallow Deer , 2009, PloS one.

[116]  Benjamin D. Dalziel,et al.  Fitting Probability Distributions to Animal Movement Trajectories: Using Artificial Neural Networks to Link Distance, Resources, and Memory , 2008, The American Naturalist.

[117]  G. Huse Individual‐based Modeling and Ecology , 2008 .

[118]  K. Rennolls,et al.  A HOME RANGE MODEL INCORPORATING BIOLOGICAL ATTRACTION POINTS , 1983 .

[119]  F. van Langevelde,et al.  Patch density determines movement patterns and foraging efficiency of large herbivores , 2007 .

[120]  M. Shaw,et al.  The Population Genetic Structure of Clonal Organisms Generated by Exponentially Bounded and Fat-Tailed Dispersal , 2007, Genetics.