Enhancing Learning Capabilities by Providing Transparency in Business Simulators

Prefabricated computer-based simulations usually offer a user-friendly interface. This allows inexperienced users fast access to the simulation because they do not have to possess specific knowledge about simulation techniques. Thus, giving simulation models an easy-to-use interface increases the acceptance of the simulation tool and draws attention to it. Learners are not only able to examine the results of their decisions but also the causes of these results using powerful system dynamics diagramming techniques. This adds transparency to the former black-boxes, producing so-called transparent-box business simulators. This article reports on an experiment evaluating the relevance and effects of structural transparency. This experimental design also can be used to examine other types of business simulators. Hypotheses regarding the effectiveness of transparency were tested. Results show the necessity for further research and collaboration.

[1]  David C. Lane,et al.  On a Resurgence of Management Simulations and Games , 1995 .

[2]  José Antonio Domínguez Machuca,et al.  Our ten years of work on transparet box business simulation , 1998 .

[3]  George P. Richardson,et al.  Introduction to System Dynamics Modeling with DYNAMO , 1981 .

[4]  Carla H. Lagorio,et al.  Psychology , 1929, Nature.

[5]  John D. W. Morecroft,et al.  Executive knowledge, models and learning , 1992 .

[6]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[7]  José Antonio Domínguez Machuca Are we losing one of the best features of system dynamics , 1992 .

[8]  W. Putz-Osterloh,et al.  Unterschiede im Erwerb und in der Reichweite des Wissens bei der Steuerung eines dynamischen Systems , 1993 .

[9]  Rainer H. Kluwe,et al.  Mental models and strategies in the control of a complex system , 1987, Informatics and Psychology Workshop.

[10]  J. Funke Microworlds based on linear equation systems: A new approach to complex problem solving and experimental results , 1993 .

[11]  Michael Pidd,et al.  Computer Simulation in Management Science (3rd Edition) , 1998 .

[12]  Werner W. Wittmann,et al.  Determinanten komplexen Problemlösens , 1996 .

[13]  David N. Ford,et al.  Mental models concepts for system dynamics research , 1998 .

[14]  Peter M. Senge,et al.  Overcoming limits to learning in computer-based learning environments , 1992 .

[15]  Jay W. Forrester,et al.  System dynamics, systems thinking, and soft OR , 1994 .

[16]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[17]  RainerH. Kluwe Chapter 19 Knowledge and Performance in Complex Problem Solving , 1993 .

[18]  J. Sterman,et al.  Systems thinking and organizational learning: Acting locally and thinking globally in the organization of the future , 1992 .

[19]  Robert M. Gagné,et al.  The Conditions of Learning and Theory of Instruction , 1985 .

[20]  L. Delbeke Quasi-experimentation - design and analysis issues for field settings - cook,td, campbell,dt , 1980 .

[21]  John D. Sterman,et al.  Learning in and about complex systems , 1994 .

[22]  Frank H. Maier,et al.  On the Effectiveness of Corporate Gaming Environments and Management Simulators , 1997 .

[23]  Ernst W. Diehl Participatory simulation software for managers: The design philosophy behind MicroWorld Creator , 1992 .

[24]  K. Jantke Planning for Learning , 2020, The Power of Assessment for Learning: Twenty Years of Research and Practice in UK and US Classrooms.

[25]  Mark Paich,et al.  Boom, bust, and failures to learn in experimental markets , 1993 .

[26]  Helmut M. Niegemann,et al.  Ein Modell selbstkontrollierten Lernens und über die Schwierigkeiten, selbstkontrolliertes Lernen hervorzubringen , 1997 .

[27]  Peter Milling,et al.  Simulationen in der Produktion , 1996 .

[28]  Norbert Groeben,et al.  Die Heidelberger Struktur-Lege-Technik (SLT) , 1984 .