Analysis of range search for random k-d trees

Abstract. We analyze the expected time complexity of range searching with k-d trees in all dimensions when the data points are uniformly distributed in the unit hypercube. The partial match results of Flajolet and Puech are reproved using elementary probabilistic methods. In addition, we give asymptotic expected time analysis for orthogonal and convex range search, as well as nearest neighbor search. We disprove a conjecture by Bentley that nearest neighbor search for a given random point in the k-d tree can be done in O(1) expected time.

[1]  Luc Devroye,et al.  Squarish k-d Trees , 2000, SIAM J. Comput..

[2]  Jirí Matousek,et al.  Geometric range searching , 1994, CSUR.

[3]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[4]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[5]  L. Rüschendorf,et al.  LIMIT LAWS FOR PARTIAL MATCH QUERIES IN QUADTREES , 2001 .

[6]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[7]  G. H. Gonnet,et al.  Handbook of algorithms and data structures: in Pascal and C (2nd ed.) , 1991 .

[8]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[9]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[10]  Gaston H. Gonnet,et al.  The analysis of multidimensional searching in quad-trees , 1991, SODA '91.

[11]  Jon Louis Bentley,et al.  Multidimensional Binary Search Trees in Database Applications , 1979, IEEE Transactions on Software Engineering.

[12]  Philippe Flajolet,et al.  Partial match retrieval of multidimensional data , 1986, JACM.

[13]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[14]  Philippe Flajolet,et al.  Analysis of KDT-Trees: KD-Trees Improved by Local Reogranisations , 1989, WADS.

[15]  Philippe Flajolet,et al.  Average cost of orthogonal range queries in multiattribute trees , 1989, Inf. Syst..

[16]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[17]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[18]  Conrado Martínez,et al.  Randomized K-Dimensional Binary Search Trees , 1998, ISAAC.

[19]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[20]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[21]  Philippe Flajolet,et al.  Average-Case Analysis of Algorithms and Data Structures , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[22]  David Thomas,et al.  The Art in Computer Programming , 2001 .