Vacancy-Enhanced Oxygen Redox Reversibility in P3-Type Magnesium-Doped Sodium Manganese Oxide Na0.67Mg0.2Mn0.8O2

Lithium-rich layered oxides and sodium layered oxides represent attractive positive electrode materials exhibiting excess capacity delivered by additional oxygen redox activity. However, structural...

[1]  G. G. Eshetu,et al.  Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives , 2020, Advanced Energy Materials.

[2]  R. Younesi,et al.  Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide , 2020 .

[3]  P. Bruce,et al.  Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes , 2019, Nature.

[4]  Chenglong Zhao,et al.  Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides , 2019, Energy Storage Materials.

[5]  A. Yamada,et al.  Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries , 2019, Nature Communications.

[6]  Xiao‐Qing Yang,et al.  Understanding the Low-Voltage Hysteresis of Anionic Redox in Na2Mn3O7 , 2019, Chemistry of Materials.

[7]  P. Bruce,et al.  What Triggers Oxygen Loss in Oxygen Redox Cathode Materials? , 2019, Chemistry of Materials.

[8]  Jun Lu,et al.  Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness , 2018, Advanced Energy Materials.

[9]  J. Tarascon,et al.  Anionic Redox Activity in a Newly Zn‐Doped Sodium Layered Oxide P2‐Na2/3Mn1−yZnyO2 (0 < y < 0.23) , 2018, Advanced Energy Materials.

[10]  A. Yamada,et al.  Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn Vacancy) , 2018 .

[11]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[12]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[13]  William E. Gent,et al.  Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides , 2017, Nature Communications.

[14]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[15]  V. Pralong,et al.  Na2Mn3O7: A Suitable Electrode Material for Na-Ion Batteries? , 2017 .

[16]  Y. Meng,et al.  Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries. , 2017, Journal of the American Chemical Society.

[17]  D. Aurbach,et al.  Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution , 2016 .

[18]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[19]  N. Sharma,et al.  The Origin of Capacity Fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study. , 2016, Journal of the American Chemical Society.

[20]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[21]  Yoshio Kobayashi,et al.  Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode , 2016, Nature Communications.

[22]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[23]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[24]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[25]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[26]  M. Marcus,et al.  Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy , 2012 .

[27]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[28]  P. Bruce,et al.  Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 , 2004 .

[29]  P. Bruce,et al.  Nonstoichiometric layered LixMnyO2 with a high capacity for lithium intercalation/deintercalation , 2002 .

[30]  P. Bruce,et al.  Layered LixMn1-yCoyO2 Intercalation ElectrodesInfluence of Ion Exchange on Capacity and Structure upon Cycling , 2001 .

[31]  J. C. Ashley Energy losses and inelastic mean free paths of low-energy electrons in polyethylene , 1982 .

[32]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[33]  A. Armstrong,et al.  Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies , 2021 .

[34]  K. Edström,et al.  How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries , 2017 .

[35]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .