Simultaneous ruin probability for multivariate gaussian risk model

Let Z(t) = (Z1(t), . . . , Zd(t)) ⊤, t ∈ R where Zi(t), t ∈ R, i = 1, ..., d are mutually independent centered Gaussian processes with continuous sample paths a.s. and stationary increments. For X(t) = AZ(t), t ∈ R, where A is a nonsingular d× d real-valued matrix, u, c ∈ R and T > 0 we derive tight bounds for P { ∃t∈[0,T ] : ∩i=1{Xi(t)− cit > ui} } and find exact asymptotics as (u1, ..., ud) ⊤ = (ua1, ..., uad)⊤ and u → ∞.

[1]  Bin Jiang,et al.  On Joint Ruin Probabilities of a Two-Dimensional Risk Model with Constant Interest Rate , 2013, J. Appl. Probab..

[2]  Enkelejd Hashorva,et al.  Asymptotics and Bounds for Multivariate Gaussian Tails , 2005 .

[3]  Enkelejd Hashorva,et al.  Extremes of vector-valued Gaussian processes: exact asymptotics , 2015, 1505.06461.

[4]  Z. Michna SELF-SIMILAR PROCESSES IN COLLECTIVE RISK THEORY , 1998 .

[5]  Extremes of vector-valued Gaussian processes , 2019, 1911.06350.

[6]  L. Ji,et al.  Ruin problem of a two-dimensional fractional Brownian motion risk process , 2018 .

[7]  Krzysztof Debicki,et al.  Simultaneous ruin probability for two-dimensional brownian risk model , 2020, J. Appl. Probab..

[8]  Enkelejd Hashorva,et al.  Pandemic-type failures in multivariate Brownian risk models , 2021, Extremes.

[9]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[10]  W. Hager Lipschitz Continuity for Constrained Processes , 1979 .

[11]  Z. Michna Ruin probabilities for two collaborating insurance companies , 2018, 1804.06598.

[12]  D. Korshunov,et al.  Tail asymptotics for Shepp-statistics of Brownian motion in ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb { , 2019, Extremes.

[13]  Y. Gordon Some inequalities for Gaussian processes and applications , 1985 .

[14]  Vladimir I. Piterbarg,et al.  On the ruin probability for physical fractional Brownian motion , 2004 .

[15]  Enkelejd Hashorva,et al.  Approximation of some multivariate risk measures for Gaussian risks , 2018, J. Multivar. Anal..

[16]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[17]  Krzysztof Debicki,et al.  A Note on Transient Gaussian Fluid Models , 2002, Queueing Syst. Theory Appl..

[18]  J. Hüsler,et al.  Extremes of a certain class of Gaussian processes , 1999 .

[19]  K. Dȩbicki,et al.  Ruin probability for Gaussian integrated processes , 2002 .

[20]  Florin Avram,et al.  Exit problem of a two-dimensional risk process from the quadrant: Exact and asymptotic results. , 2008, 0802.4060.

[21]  Simeon M. Berman AN ASYMPTOTIC FORMULA FOR THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS WITH STATIONARY INCREMENTS , 1985 .

[22]  Z. Palmowski,et al.  Two-dimensional ruin probability for subexponential claim size , 2017, 1702.01312.