Optical coherence tomography angiography in glaucoma

Purpose of review Optical coherence tomography angiography (OCTA) studies have demonstrated reduced microcirculation in the superficial optic nerve, peripapillary retina, and the macula of glaucoma patients. The scope of this review is to outline recent studies using OCTA in glaucoma and highlight how OCTA may help improve diagnosis and follow-up in glaucoma patients. Recent findings OCTA studies have provided evidence of vascular changes in the optic nerve head, peripapillary, and macula region in glaucoma in comparison to glaucoma suspects and normal eyes. Additionally, OCTA can detect longitudinal reduction of peripapillary and macula vessel density in glaucoma patients. It remains unclear whether the reduced microcirculation in glaucoma patients induces the neuronal damage or arises through reduced circulation requirements in damaged tissue. Summary OCTA is a novel imaging modality that has great potential to enhance our understanding of glaucoma and to improve our ability to detect and treat it.

[1]  M. Kook,et al.  Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma. , 2018, American journal of ophthalmology.

[2]  L. Zangwill,et al.  Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes. , 2018, American journal of ophthalmology.

[3]  L. Pasquale Vascular and autonomic dysregulation in primary open-angle glaucoma , 2016, Current opinion in ophthalmology.

[4]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[5]  C. Heinz,et al.  OCTA vessel density changes in the macular zone in glaucomatous eyes , 2018, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  Jayanthi Sivaswamy,et al.  Measurement of Radial Peripapillary Capillary Density in the Normal Human Retina Using Optical Coherence Tomography Angiography , 2017, Journal of glaucoma.

[7]  Robert N Weinreb,et al.  Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. , 2016, Ophthalmology.

[8]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[9]  David Huang,et al.  Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. , 2015, JAMA ophthalmology.

[10]  James G. Fujimoto,et al.  Image Artifacts in Optical Coherence Angiography , 2016 .

[11]  M. Kook,et al.  Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia , 2018, British Journal of Ophthalmology.

[12]  Ryo Kawasaki,et al.  Vascular risk factors in glaucoma: a review , 2011, Clinical & experimental ophthalmology.

[13]  Eun Ji Lee,et al.  Parapapillary Deep-Layer Microvasculature Dropout in Glaucoma: Topographic Association With Glaucomatous Damage. , 2017, Investigative ophthalmology & visual science.

[14]  M. Nicolela,et al.  Clinical clues of vascular dysregulation and its association with glaucoma. , 2008, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[15]  間瀬 智子,et al.  Radial Peripapillary Capillary Network Visualized Using Wide-Field Montage Optical Coherence Tomography Angiography , 2016 .

[16]  Alberto Diniz-Filho,et al.  Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. , 2017, Ophthalmology.

[17]  Carmen A Puliafito,et al.  OCT angiography in healthy human subjects. , 2014, Ophthalmic surgery, lasers & imaging retina.

[18]  Toco Y P Chui,et al.  Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomography Angiography Study , 2018, JAMA ophthalmology.

[19]  Ruikang K. Wang,et al.  Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications , 2017, Progress in Retinal and Eye Research.

[20]  Alberto Diniz-Filho,et al.  Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. , 2016, Ophthalmology.

[21]  R. Spaide,et al.  Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. , 2015, JAMA ophthalmology.

[22]  Christophe Baudouin,et al.  Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography , 2016, Journal of ophthalmology.

[23]  Sachiko Udagawa,et al.  Comparison of Sectoral Structure-Function Relationships in Glaucoma: Vessel Density Versus Thickness in the Peripapillary Retinal Nerve Fiber Layer. , 2017, Investigative ophthalmology & visual science.

[24]  David J. Wilson,et al.  Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye , 2015, Proceedings of the National Academy of Sciences.

[25]  Eun Ji Lee,et al.  Parapapillary Choroidal Microvasculature Dropout in Glaucoma: A Comparison between Optical Coherence Tomography Angiography and Indocyanine Green Angiography. , 2017, Ophthalmology.

[26]  Jaewan Choi,et al.  Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients With Central Visual Field Defects. , 2017, Investigative ophthalmology & visual science.

[27]  Ruikang K. Wang,et al.  Feature space optical coherence tomography based micro-angiography. , 2015, Biomedical optics express.

[28]  Ruikang K. Wang,et al.  Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography , 2016, Journal of biomedical optics.

[29]  L. Zangwill,et al.  Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. , 2017, American journal of ophthalmology.

[30]  K. Nouri-Mahdavi,et al.  Optical Coherence Tomography Angiography: A New Tool in Glaucoma Diagnostics and Research , 2017, Journal of ophthalmic & vision research.

[31]  David Huang,et al.  Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes , 2016, Investigative ophthalmology & visual science.

[32]  G. Holló Influence of Removing the Large Retinal Vessels–related Effect on Peripapillary Vessel Density Progression Analysis in Glaucoma , 2018, Journal of glaucoma.

[33]  C. Leung,et al.  Optical Coherence Tomography Angiography Compared With Optical Coherence Tomography Macular Measurements for Detection of Glaucoma , 2018, JAMA ophthalmology.

[34]  Diurnal Variations of Peripapillary and Macular Vessel Density in Glaucomatous Eyes Using Optical Coherence Tomography Angiography , 2018, Journal of glaucoma.

[35]  Nadia K. Waheed,et al.  Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies , 2016, Progress in Retinal and Eye Research.

[36]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[37]  Thomas S. Hwang,et al.  Automated Quantification of Nonperfusion in Three Retinal Plexuses Using Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy , 2016, Investigative ophthalmology & visual science.

[38]  D. Hood,et al.  Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. , 2014, Investigative ophthalmology & visual science.

[39]  Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values , 2017, PloS one.

[40]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[41]  Guohua Shi,et al.  Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[42]  Narendra K. Puttaiah,et al.  Vessel Density and Structural Measurements of Optical Coherence Tomography in Primary Angle Closure and Primary Angle Closure Glaucoma. , 2017, American journal of ophthalmology.

[43]  R. Agrawal,et al.  Peripapillary Choroidal Vascularity Index in Glaucoma-A Comparison Between Spectral-Domain OCT and OCT Angiography. , 2018, Investigative ophthalmology & visual science.

[44]  Mark A. Christopher,et al.  Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. , 2018, Ophthalmology.

[45]  S. Orgül,et al.  Optic nerve blood-flow abnormalities in glaucoma , 1998, Progress in Retinal and Eye Research.

[46]  Ruikang K. Wang,et al.  Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography–Based Microangiography , 2016, Investigative ophthalmology & visual science.

[47]  David Huang,et al.  Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. , 2017, Ophthalmology.

[48]  Xiulan Zhang,et al.  Microvascular Density in Glaucomatous Eyes With Hemifield Visual Field Defects: An Optical Coherence Tomography Angiography Study. , 2016, American journal of ophthalmology.

[49]  Ruikang K. Wang,et al.  Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Eyes With Glaucoma and Single-Hemifield Visual Field Loss , 2017, JAMA ophthalmology.

[50]  E. Stefánsson,et al.  The impact of ocular blood flow in glaucoma , 2002, Progress in Retinal and Eye Research.

[51]  Robert N Weinreb,et al.  Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. , 2017, Ophthalmology.

[52]  E. Aulhorn [Visual field in glaucoma]. , 1969, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[53]  Ruikang K. Wang,et al.  Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects , 2012, Journal of biomedical optics.

[54]  David Huang,et al.  Projection-resolved optical coherence tomographic angiography. , 2016, Biomedical optics express.

[55]  N. Eter,et al.  Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients , 2018, Graefe's Archive for Clinical and Experimental Ophthalmology.

[56]  Narendra K. Puttaiah,et al.  Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage , 2017, Journal of glaucoma.

[57]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[58]  R. Weinreb,et al.  Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes , 2017, British Journal of Ophthalmology.

[59]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[60]  Mark A. Christopher,et al.  Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma , 2018, Journal of glaucoma.

[61]  V. Pop,et al.  The Role of Oxidative Stress and Vascular Insufficiency in Primary Open Angle Glaucoma , 2014, Clujul medical.

[62]  Narendra K. Puttaiah,et al.  Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. , 2016, American journal of ophthalmology.

[63]  David Huang,et al.  Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical Coherence Tomography Angiography , 2018, Journal of glaucoma.

[64]  Chun-Hsiu Liu,et al.  Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. , 2017, Investigative ophthalmology & visual science.

[65]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[66]  H. Rao,et al.  A Sectoral Analysis of Vessel Density Measurements in Perimetrically Intact Regions of Glaucomatous Eyes: An Optical Coherence Tomography Angiography Study , 2018, Journal of glaucoma.

[67]  Martin F. Kraus,et al.  Optical coherence tomography angiography of optic disc perfusion in glaucoma. , 2014, Ophthalmology.

[68]  Ruikang K. Wang,et al.  Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography , 2016, PloS one.

[69]  D M Snodderly,et al.  Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. , 1995, Experimental eye research.

[70]  G. Holló Comparison of Peripapillary OCT Angiography Vessel Density and Retinal Nerve Fiber Layer Thickness Measurements for Their Ability to Detect Progression in Glaucoma , 2018, Journal of glaucoma.

[71]  A. Sommer,et al.  Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. , 1991, Archives of ophthalmology.

[72]  James G. Fujimoto,et al.  Quantitative OCT angiography of optic nerve head blood flow , 2012, Biomedical optics express.

[73]  Narendra K. Puttaiah,et al.  Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma , 2016, British Journal of Ophthalmology.

[74]  T. Aung,et al.  Discriminant Function of Optical Coherence Tomography Angiography to Determine Disease Severity in Glaucoma. , 2016, Investigative ophthalmology & visual science.

[75]  Ruikang K. Wang,et al.  Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography , 2018, Journal of glaucoma.

[76]  Simon S. Gao,et al.  Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. , 2015, Biomedical optics express.

[77]  Ruikang K. Wang,et al.  Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. , 2016, Quantitative imaging in medicine and surgery.