Surface chemistry and tip-sample interactions in atomic force microscopy

Abstract Microfabricated silicon nitride cantilevers with integral tips are commonly employed in atomic force microscopy. The link between surface chemistry, including surface group acid-base dissociation and counterion complexation, and tip-sample interaction in aqueous electrolyte solution is examined. Silicon nitride tip interaction with “flat plate” samples of both muscovite mica and silicon nitride as a function of aqueous solution pH and electrolyte concentration is investigated. The long-range component of the interaction is normalized with respect to an effective tip radius, and as a result electrical double layer and van der Waals interactions can be discussed quantitatively. Microfracture and tribochemical tip wear is also discussed with reference to atomic force microscope contact mode imaging. Non-retarded Hamaker constants are reported for a range of silicon nitride, silica, silicon and muscovite mica systems.

[1]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[2]  C. Drummond,et al.  Acid-base equilibria in aqueous micellar solutions. Part 1. - 'Simple' weak acids and bases , 1989 .

[3]  H. Philipp,et al.  Properties of Si x O y N z Films on Si , 1968 .

[4]  Hubert M. Pollock,et al.  Interpretation issues in force microscopy , 1991 .

[5]  M. Esashi,et al.  Methods of isfet fabrication , 1981 .

[6]  Mme S. Robin,et al.  Monochromateur à Réseau Concave Pour l'U.V. Lointain. Détermination des Constantes Optiques Complexes de Cristaux Anisotropes , 1968 .

[7]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[8]  J. Andrade,et al.  Interactions of von Willebrand factor on mica studied by atomic force microscopy , 1992 .

[9]  A Engel,et al.  Biological applications of scanning probe microscopes. , 1991, Annual review of biophysics and biophysical chemistry.

[10]  H. Philipp Optical Properties of Silicon Nitride , 1973 .

[11]  Francois Creuzet,et al.  Atomic force microscopy for local characterization of surface acid-base properties , 1993 .

[12]  Paul K. Hansma,et al.  Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy , 1990 .

[13]  Lee R. White,et al.  The calculation of hamaker constants from liftshitz theory with applications to wetting phenomena , 1980 .

[14]  P. Hansma,et al.  Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope , 1990 .

[15]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[16]  J. A. Greenwood The Area of Contact Between Rough Surfaces and Flats , 1967 .

[17]  Paul K. Hansma,et al.  Molecular-resolution images of Langmuir-Blodgett films and DNA by atomic force microscopy , 1991 .

[18]  K. Lodge On the comparison of the predictions of lifshitz theory with experiment: Van der Wads forces between mica plates , 1975 .

[19]  Study of the silicon nitride/aqueous electrolyte interface on colloidal aqueous suspensions and on electrolyte/insulator/semiconductor structures , 1989 .

[20]  Gerd Binnig,et al.  Atomic Resolution with Atomic Force Microscope , 1987 .

[21]  H. Butt,et al.  Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. , 1991, Biophysical journal.

[22]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[23]  Paul K. Hansma,et al.  Quantized adhesion detected with the atomic force microscope , 1992 .

[24]  J. Atwood,et al.  Synthesis of 1,2-ditellurolane derivatives , 1993 .

[25]  S. Jahanmir,et al.  Friction and Wear of Silicon Nitride Lubricated by Humid Air, Water, Hexadecane and Hexadecane + 0.5 Percent Stearic Acid , 1988 .

[26]  P. Kékicheff,et al.  Electrical Double Layer Structure Revisited via a Surface Force Apparatus: Mica Interfaces in Lithium Nitrate Solutions , 1993 .

[27]  J. Heinrich,et al.  Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride , 1987 .

[28]  P K Hansma,et al.  Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. , 1990, Biophysical journal.

[29]  R. Brow,et al.  Thermochemical Nitridation of Microporous Silica Films in Ammonia , 1987 .

[30]  Richard M. Pashley,et al.  Hydration forces between mica surfaces in aqueous electrolyte solutions , 1981 .

[31]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[32]  J. Szczypa,et al.  Estimation of surface ionization constants from electrokinetic data , 1984 .

[33]  J. M. Drake,et al.  Special Issue: Dynamics of Molecular Systems , 1990 .

[34]  L. Bergström,et al.  Interfacial Characterization of Silicon Nitride Powders , 1989 .

[35]  Peter J. Scales,et al.  Electrokinetics of the silica-solution interface: a flat plate streaming potential study , 1992 .

[36]  J. Meindl,et al.  Ion-sensing devices with silicon nitride and borosilicate glass insulators , 1987, IEEE Transactions on Electron Devices.

[37]  H. Christenson,et al.  Adhesion between surfaces in undersaturated vapors—a reexamination of the influence of meniscus curvature and surface forces , 1988 .

[38]  C. Drummond,et al.  Examination of the geometry of long-range tip—sample interaction in atomic force microscopy , 1994 .

[39]  C. M. Randall,et al.  Refractive indices of germanium, silicon, and fused quartz in the far infrared. , 1967, Applied optics.

[40]  Richard M. Pashley,et al.  DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties , 1981 .

[41]  W. E. Spicer,et al.  Electronic Structure of Amorphous Si from Photoemission and Optical Studies , 1972 .

[42]  H. R. Philipp,et al.  Optical properties of non-crystalline Si, SiO, SiOx and SiO2 , 1971 .

[43]  U. Buechner The dielectric function of mica and quartz determined by electron energy losses , 1975 .

[44]  M. Porter,et al.  Atomic scale imaging of alkanethiolate monolayers at gold surfaces with atomic force microscopy , 1992 .

[45]  Derek Y. C. Chan,et al.  Interaction free energy between identical spherical colloidal particles : the linearized Poisson-Boltzmann theory , 1993 .

[46]  A. M. Taylor,et al.  Thickness and Refractive Index Measurement of a Lamina with a Michelson Interferometer , 1966 .

[47]  J. Leckie,et al.  Surface ionization and complexation at the oxide/water interface , 1978 .

[48]  C. D. Wagner,et al.  Auger and photoelectron line energy relationships in aluminum–oxygen and silicon–oxygen compounds , 1982 .

[49]  D. S. Pearson,et al.  New method for efficient colloidal particle packing via modulation of repulsive lubricating hydration forces , 1990 .

[50]  Timothy Senden,et al.  Measurement of forces in liquids using a force microscope , 1992 .

[51]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[52]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[53]  M. Brodsky,et al.  Infrared vibrational spectra of amorphous Si and Ge , 1974 .

[54]  P. Scales,et al.  Electrokinetics of the muscovite mica-aqueous solution interface , 1990 .

[55]  M. Baraton,et al.  FT-IR characterization of silicon nitride Si3N4 and silicon oxynitride Si2ON2 surfaces , 1986 .

[56]  Butt,et al.  Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. , 1992, Physical review. B, Condensed matter.

[57]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[58]  Timothy Senden,et al.  Experimental Determination of Spring Constants in Atomic Force Microscopy , 1994 .

[59]  J. Ashley Taylor,et al.  Chemical reactions of N 2+ ion beams with group IV elements and their oxides , 1978 .

[60]  J. Andrade,et al.  Manipulation of Proteins on Mica by Atomic Force Microscopy. , 1992, Langmuir : the ACS journal of surfaces and colloids.

[61]  B. Ninham,et al.  Dispersion interaction of crossed mica cylinders: a reanalysis of the Israelachvili–Tabor experiments , 1976 .

[62]  B. Brixner Refractive-Index Interpolation for Fused Silica* , 1967 .

[63]  D. Clarke On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials , 1987 .

[64]  J. Meindl,et al.  A process for the combined fabrication of ion sensors and CMOS circuits , 1988, IEEE Electron Device Letters.

[65]  C. Drummond,et al.  Atomic Force Microscopy: Imaging with Electrical Double Layer Interactions , 1994 .

[66]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[67]  D. F. Evans,et al.  Counterion specificity as the determinant of surfactant aggregation , 1986 .

[68]  C. Drummond,et al.  Effect of electrolyte on the mean interfacial solvent and electrostatic characteristics of cationic micelles , 1987 .

[69]  A. Boef The influence of lateral forces in scanning force microscopy , 1991 .

[70]  Thomas W. Healy,et al.  Ionizable surface group models of aqueous interfaces , 1978 .

[71]  B. Ninham,et al.  Calculation of van der Waals forces across mica plates using Lifshitz theory , 1972 .

[72]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm , 1978 .

[73]  D. Gingell,et al.  Computation of van der Waals interactions in aqueous systems using reflectivity data. , 1972, Journal of theoretical biology.

[74]  T. E. Fischer,et al.  Interaction of tribochemistry and microfracture in the friction and wear of silicon nitride , 1985 .

[75]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[76]  T. Fischer,et al.  Friction and Wear of Silicon Nitride and Silicon Carbide in Water: Hydrodynamic Lubrication at Low Sliding Speed Obtained by Tribochemical Wear , 1987 .

[77]  R. Brow,et al.  Compositionally Dependent Si 2p Binding Energy Shifts in Silicon Oxynitride Thin Films , 1986 .

[78]  C. Drummond,et al.  Direct force measurements between titanium dioxide surfaces , 1993 .

[79]  P. Lamy Optical constants of crystalline and fused quartz in the far ultraviolet. , 1977, Applied optics.

[80]  P K Hansma,et al.  Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. , 1990, Biophysical journal.

[81]  E. M. Lifshitz,et al.  The general theory of van der Waals forces , 1961 .

[82]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[83]  S. Nishimura,et al.  Zeta potential measurement of muscovite mica basal plane-aqueous solution interface by means of plane interface technique , 1992 .

[84]  E. Taft Characterization of Silicon Nitride Films , 1971 .

[85]  J. Ashley Taylor,et al.  Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides , 1978 .

[86]  D. L. Misell,et al.  Electron energy loss spectra for members of the mica group and related sheet silicates , 1972 .

[87]  J. A. Taylor,et al.  Further examination of the Si KLL Auger line in silicon nitride thin films , 1981 .

[88]  H. Philipp The infrared optical properties of SiO2 and SiO2 layers on silicon , 1979 .

[89]  P. Hansma,et al.  Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. , 1988, Science.

[90]  Lennart Bergström,et al.  Surface chemistry of silicon nitride powders: Electrokinetic behaviour and ESCA studies , 1990 .