Ridge Estimation to the Restricted Linear Model

This article is concerned with the problem of multicollinearity in a linear model with linear restrictions. After introducing a spheral restricted condition, a new restricted ridge estimation method is proposed by minimizing the sum of squared residuals. The property of the new estimator in its superiority over the ordinary restricted least squares estimation is then theoretically analyzed. Furthermore, a sufficient and necessary condition for selecting the ridge parameter k is obtained. To simplify the selection of the ridge parameter, a sufficient condition is also given. Finally, a numerical example demonstrates the merit of the new method in the aspect of solving the multicollinearity over the ordinary restricted least squares estimation.