A Joint Optimization Technique for Multi-Edge Type LDPC Codes

This paper considers the optimization of multi-edge type low-density parity-check (METLDPC) codes to maximize the decoding threshold. We propose an algorithm to jointly optimize the node degree distribution and the multi-edge structure of MET-LDPC codes for given values of the maximum number of edge-types and maximum node degrees. This joint optimization is particularly important for MET-LDPC codes as it is not clear a priori which structures will be good. Using several examples, we demonstrate that the MET-LDPC codes designed by the proposed joint optimization algorithm exhibit improved decoding thresholds compared to previously reported MET-LDPC codes.

[1]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[2]  Regina Berretta,et al.  Optimization of graph based codes for belief propagation decoding , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[3]  Vahid Jamali,et al.  On the Design of Fast Convergent LDPC Codes: An Optimization Approach , 2014, ArXiv.

[4]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  Vahid Jamali,et al.  On the Design of Fast Convergent LDPC Codes for the BEC: An Optimization Approach , 2014, IEEE Transactions on Communications.

[6]  Jinhong Yuan,et al.  Design of Multi-Edge-Type Bilayer-Expurgated LDPC Codes for Decode-and-Forward in Relay Channels , 2011, IEEE Transactions on Communications.

[7]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[8]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[9]  Mahmoud Ahmadian,et al.  Optimal rate irregular low-density parity-check codes in binary erasure channel , 2012, IET Commun..

[10]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[11]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[12]  Gian Mario Maggio,et al.  Analysis of the iterative decoding of LDPC and product codes using the Gaussian approximation , 2003, IEEE Trans. Inf. Theory.

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[15]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[16]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[17]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[18]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[19]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[20]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[21]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[22]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[23]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[24]  Sarah J. Johnson,et al.  Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes , 2009 .