Phylogenetic logistic regression for binary dependent variables.

We develop statistical methods for phylogenetic logistic regression in which the dependent variable is binary (0 or 1) and values are nonindependent among species, with phylogenetically related species tending to have the same value of the dependent variable. The methods are based on an evolutionary model of binary traits in which trait values switch between 0 and 1 as species evolve up a phylogenetic tree. The more frequently the trait values switch (i.e., the higher the rate of evolution), the more rapidly correlations between trait values for phylogenetically related species break down. Therefore, the statistical methods also give a way to estimate the phylogenetic signal of binary traits. More generally, the methods can be applied with continuous- and/or discrete-valued independent variables. Using simulations, we assess the statistical properties of the methods, including bias in the estimates of the logistic regression coefficients and the parameter that estimates the strength of phylogenetic signal in the dependent variable. These analyses show that, as with the case for continuous-valued dependent variables, phylogenetic logistic regression should be used rather than standard logistic regression when there is the possibility of phylogenetic correlations among species. Standard logistic regression does not properly account for the loss of information caused by resemblance of relatives and as a result is likely to give inflated type I error rates, incorrectly identifying regression parameters as statistically significantly different from zero when they are not.

[1]  M. Lajeunesse,et al.  Meta‐Analysis and the Comparative Phylogenetic Method , 2009, The American Naturalist.

[2]  A. Ives,et al.  Morphometrics of the Avian Small Intestine Compared with That of Nonflying Mammals: A Phylogenetic Approach , 2008, Physiological and Biochemical Zoology.

[3]  L. Revell,et al.  Phylogenetic signal, evolutionary process, and rate. , 2008, Systematic biology.

[4]  Ary,et al.  The Role of Subjectivity in Reconstructing Ancestral Character States : A Bayesian Approach to Unknown Rates , States , and Transformation Asymmetries , 2008 .

[5]  T. Garland,et al.  Within-species variation and measurement error in phylogenetic comparative methods. , 2007, Systematic biology.

[6]  D. Forsyth,et al.  Testing the metabolic theory of ecology: allometric scaling exponents in mammals. , 2007, Ecology.

[7]  C. Conway,et al.  Why Migrate? A Test of the Evolutionary Precursor Hypothesis , 2007, The American Naturalist.

[8]  T. Garland,et al.  Sexual size dimorphism in a Drosophila clade, the D. obscura group. , 2006, Zoology.

[9]  F. James Rohlf,et al.  A COMMENT ON PHYLOGENETIC CORRECTION , 2006, Evolution; international journal of organic evolution.

[10]  M. Pagel,et al.  Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo , 2006, The American Naturalist.

[11]  Thomas F Hansen,et al.  ASSESSING CURRENT ADAPTATION AND PHYLOGENETIC INERTIA AS EXPLANATIONS OF TRAIT EVOLUTION:THE NEED FOR CONTROLLED COMPARISONS , 2005, Evolution; international journal of organic evolution.

[12]  Joseph B. Williams,et al.  Basal Metabolic Rate in Carnivores Is Associated with Diet after Controlling for Phylogeny , 2005, Physiological and Biochemical Zoology.

[13]  T. Garland,et al.  Phylogenetic approaches in comparative physiology , 2005, Journal of Experimental Biology.

[14]  Joseph Felsenstein,et al.  Using the quantitative genetic threshold model for inferences between and within species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[16]  E. Caviedes-Vidal,et al.  Kidney Mass and Relative Medullary Thickness of Rodents in Relation to Habitat, Body Size, and Phylogeny , 2004, Physiological and Biochemical Zoology.

[17]  D. Forsyth,et al.  Climatic Suitability, Life‐History Traits, Introduction Effort, and the Establishment and Spread of Introduced Mammals in Australia , 2004 .

[18]  M. Lynch,et al.  The Phylogenetic Mixed Model , 2004, The American Naturalist.

[19]  D. Macdonald,et al.  THE EVOLUTION AND MAINTENANCE OF DELAYED IMPLANTATION IN THE MUSTELIDAE (MAMMALIA: CARNIVORA) , 2004, Evolution; international journal of organic evolution.

[20]  A. Angerbjörn,et al.  THE MONOPHYLETIC ORIGIN OF DELAYED IMPLANTATION IN CARNIVORES AND ITS IMPLICATIONS , 2003, Evolution; international journal of organic evolution.

[21]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[22]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[23]  David N. Reznick,et al.  Independent Origins and Rapid Evolution of the Placenta in the Fish Genus Poeciliopsis , 2002, Science.

[24]  T. Garland,et al.  Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods , 2002 .

[25]  E. Paradis,et al.  Analysis of comparative data using generalized estimating equations. , 2002, Journal of theoretical biology.

[26]  M. Schemper,et al.  A solution to the problem of separation in logistic regression , 2002, Statistics in medicine.

[27]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[28]  M. Pagel,et al.  THE ORIGINS OF SEXUAL DIMORPHISM IN BODY SIZE IN UNGULATES , 2002, Evolution; international journal of organic evolution.

[29]  F. James Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[30]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[31]  François-Joseph Lapointe,et al.  A Generalized Permutation Model for the Analysis of Cross-Species Data , 2001, J. Classif..

[32]  T. Garland,et al.  Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope , 2000 .

[33]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[34]  Patrick D. Lorch,et al.  Power of the concentrated changes test for correlated evolution. , 1999, Systematic biology.

[35]  Todd H. Oakley,et al.  Reconstructing ancestral character states: a critical reappraisal. , 1998, Trends in ecology & evolution.

[36]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[37]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[38]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[39]  T. Tregenza,et al.  Phylogenies and the Comparative Method in Animal Behaviour , 1997 .

[40]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[41]  A. Grafen,et al.  A new model for discrete character evolution. , 1997, Journal of theoretical biology.

[42]  T. F. Hansen,et al.  TRANSLATING BETWEEN MICROEVOLUTIONARY PROCESS AND MACROEVOLUTIONARY PATTERNS: THE CORRELATION STRUCTURE OF INTERSPECIFIC DATA , 1996, Evolution; international journal of organic evolution.

[43]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[44]  G. A Statistical Tests for Discrete Cross-species Data , 1996 .

[45]  Clifford M. Hurvich,et al.  Model selection for extended quasi-likelihood models in small samples. , 1995, Biometrics.

[46]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  P. Diggle,et al.  Modelling multivariate binary data with alternating logistic regressions , 1993 .

[48]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[49]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[50]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[51]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[52]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[53]  Montgomery Slatkin,et al.  NULL MODELS FOR THE NUMBER OF EVOLUTIONARY STEPS IN A CHARACTER ON A PHYLOGENETIC TREE , 1991, Evolution; international journal of organic evolution.

[54]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[55]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[56]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[57]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[58]  W. Maddison A METHOD FOR TESTING THE CORRELATED EVOLUTION OF TWO BINARY CHARACTERS: ARE GAINS OR LOSSES CONCENTRATED ON CERTAIN BRANCHES OF A PHYLOGENETIC TREE? , 1990, Evolution; international journal of organic evolution.

[59]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[61]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[62]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[63]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[64]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[65]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[66]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[67]  P. Jarman,et al.  The Social Organisation of Antelope in Relation To Their Ecology , 1974 .

[68]  J. E. Weaver Alfalfa Production in a Grassland Climate , 1930 .