Soft Biometric Traits for Personal Recognition Systems

Many existing biometric systems collect ancillary information like gender, age, height, and eye color from the users during enrollment. However, only the primary biometric identifier (fingerprint, face, hand-geometry, etc.) is used for recognition and the ancillary information is rarely utilized. We propose the utilization of “soft” biometric traits like gender, height, weight, age, and ethnicity to complement the identity information provided by the primary biometric identifiers. Although soft biometric characteristics lack the distinctiveness and permanence to identify an individual uniquely and reliably, they provide some evidence about the user identity that could be beneficial. This paper presents a framework for integrating the ancillary information with the output of a primary biometric system. Experiments conducted on a database of 263 users show that the recognition performance of a fingerprint system can be improved significantly (≈ 5%) by using additional user information like gender, ethnicity, and height.