Determining the Pyroxene Mineralogies of Vestoids

Bulk pyroxene compositions were calculated for a number of V-type asteroid spectra using formulae derived by Burbine et al. These formulae were derived by analyzing HED (howardite, eucrite, and diogenite) meteorites and calculate bulk Fs (mol%) and Wo (mol%) contents using derived band centers. Using HEDs with known bulk pyroxene compositions, the uncertainty in the predicted Fs contents was determined to be ±3 mol%, and the uncertainty in the predicted Wo contents was ±2 mol%. V-type asteroids tend to have interpreted pyroxene mineralogies consistent primarily with eucrites and howardites. We investigate why diogenitic mineralogies appear so rare among ∼5–10 km V-type asteroids but are much more commonly present among HED meteorites. One possibility is that diogenitic intrusions are extremely “thin” but widespread in Vesta’s eucritic crust. In this scenario, Vestoids (V-type asteroids thought to be derived from Vesta) would be expected to be solid fragments of Vesta. Another possibility is that Vesta’s upper crust has been significantly shattered and diogenitic material would be much less common than the eucritic material in the crust. Vestoids would then be expected to be rubble piles. The belief that most asteroid families were shattered at least twice would argue that Vesta’s crust is also shattered and that Vestoids are rubble piles.

[1]  F. Dirri,et al.  A new prospect to analyse the spectral properties of v-type asteroids , 2022, Icarus.

[2]  C. Klimczak,et al.  Structural relationships in and around the Rheasilvia basin on Vesta , 2022, Journal of Structural Geology.

[3]  S. Marchi,et al.  A young age of formation of Rheasilvia basin on Vesta from floor deformation patterns and crater counts , 2021, Meteoritics & Planetary Science.

[4]  M. Zientek,et al.  Origin of the J-M Reef and lower banded series, stillwater complex, Montana, USA , 2021, Precambrian Research.

[5]  D. Mittlefehldt,et al.  Eucrite‐type achondrites: Petrology and oxygen isotope compositions † , 2021, Meteoritics & Planetary Science.

[6]  A. Tomkins,et al.  A model for evolving crust on 4 Vesta through combined compositional and thermal modelling , 2021 .

[7]  C. Agee,et al.  Olivine-rich achondrites from Vesta and the missing mantle problem , 2021, Nature Communications.

[8]  C. Carli,et al.  Iron rich basaltic eucrites, implication on spectral properties and parental bodies , 2021, Icarus.

[9]  M. Barbieri,et al.  Characterization of V-type asteroids orbiting in the middle and outer main belt , 2021 .

[10]  H. McSween,et al.  Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data , 2019, Geochemistry.

[11]  E. Cloutis,et al.  Basalt or Not? Near-infrared Spectra, Surface Mineralogical Estimates, and Meteorite Analogs for 33 Vp-type Asteroids , 2018, The Astronomical Journal.

[12]  N. Moskovitz,et al.  The compositional diversity of non-Vesta basaltic asteroids , 2017, 1705.06304.

[13]  Eleonora Ammannito,et al.  Spectral characterization of V-type asteroids outside the Vesta family , 2017 .

[14]  V. Reddy,et al.  Reddy Main Belt Asteroid Spectra V1.0 , 2016 .

[15]  P. S. Hardersen Hardersen IRTF Asteroid NIR Reflectance Spectra V1.0 , 2016 .

[16]  M. Fulchignoni,et al.  Spectral characterization of V-type asteroids - II. A statistical analysis , 2015, 1510.08776.

[17]  V. Reddy,et al.  VESTOIDS, PART II: THE BASALTIC NATURE AND HED METEORITE ANALOGS FOR EIGHT Vp-TYPE ASTEROIDS AND THEIR ASSOCIATIONS WITH (4) VESTA , 2015, 1510.06636.

[18]  Alessandro Frigeri,et al.  Composition of the northern regions of Vesta analyzed by the Dawn mission , 2015 .

[19]  D. Mittlefehldt Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites , 2015 .

[20]  V. Reddy,et al.  More chips off of Asteroid (4) Vesta: characterization of eight Vestoids and their HED meteorite analogs , 2014, 1408.2731.

[21]  W. Benz,et al.  A deep crust–mantle boundary in the asteroid 4 Vesta , 2014, Nature.

[22]  C. Russell,et al.  Spectral diversity and photometric behavior of main-belt and near-Earth vestoids and (4) Vesta: A study in preparation for the Dawn encounter , 2014 .

[23]  E. Scott,et al.  The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body , 2014 .

[24]  M. C. De Sanctis,et al.  Olivine in an unexpected location on Vesta’s surface , 2013, Nature.

[25]  Richard P. Binzel,et al.  Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites , 2013 .

[26]  Alessandro Frigeri,et al.  Vestan lithologies mapped by the visual and infrared spectrometer on Dawn , 2013 .

[27]  D. Mittlefehldt,et al.  Composition and petrology of HED polymict breccias: The regolith of (4) Vesta , 2013 .

[28]  Andreas Nathues,et al.  Vesta, vestoids, and the HED meteorites: Interconnections and differences based on Dawn Framing Camera observations , 2013 .

[29]  C. Russell,et al.  Global photometric properties of Asteroid (4) Vesta observed with Dawn Framing Camera , 2013, 1310.4165.

[30]  Alessandro Frigeri,et al.  Vesta's mineralogical composition as revealed by the visible and infrared spectrometer on Dawn , 2013 .

[31]  W. Benz,et al.  The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions , 2013, Nature.

[32]  Eleonora Ammannito,et al.  Composition of the Rheasilvia basin, a window into Vesta's interior , 2013 .

[33]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[34]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[35]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[36]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[37]  B. Schmitt,et al.  NIR spectral trends of HED meteorites: Can we discriminate between the magmatic evolution, mechanical mixing and observation geometry effects? , 2011 .

[38]  S. Bus IRTF Near-IR Spectroscopy of Asteroids V1.0 , 2011 .

[39]  H. McSween,et al.  The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids , 2011 .

[40]  N. Moskovitz,et al.  Mineralogy and thermal properties of V-type Asteroid 956 Elisa: Evidence for diogenitic material from the Spitzer IRS (5–35 μm) spectrum , 2011 .

[41]  L. McFadden,et al.  Mineralogical characterization of some V‐type asteroids, in support of the NASA Dawn mission★ , 2011 .

[42]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of achondritic meteorites , 2011 .

[43]  Brigitte Zanda,et al.  Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites , 2010 .

[44]  A. W. Beck,et al.  Diogenites as polymict breccias composed of orthopyroxenite and harzburgite , 2010 .

[45]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[46]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[47]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[48]  H. McSween,et al.  Petrology of the unbrecciated eucrites , 2009 .

[49]  Robert Jedicke,et al.  The Distribution of Basaltic Asteroids in the Main Belt , 2008, 0807.3951.

[50]  Arizona State University,et al.  A Spectroscopically Unique Main-Belt Asteroid: 10537 (1991 RY16) , 2008, 0806.2185.

[51]  I. Franchi,et al.  The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts , 2007 .

[52]  J. Papike,et al.  Petrogenetic relationships between diogenites and olivine diogenites: Implications for magmatism on the HED parent body , 2007 .

[53]  M. Serra-Ricart,et al.  Basaltic asteroids in the Near-Earth Objects population: a mineralogical analysis , 2006 .

[54]  Sebastiano Ligori,et al.  MIDI observations of 1459 Magnya: First attempt of interferometric observations of asteroids with the VLTI☆ , 2006 .

[55]  D. Mittlefehldt Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission , 2005 .

[56]  R. Binzel,et al.  Small Main-belt Asteroid Spectroscopic Survey, Phase II , 2004 .

[57]  J. Licandro,et al.  Mineralogical characterization of some basaltic asteroids in the neighborhood of (4) Vesta: first results , 2004 .

[58]  W. Benz,et al.  Catastrophic disruption of pre-shattered parent bodies , 2004 .

[59]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[60]  Derek C. Richardson,et al.  Disruption of fragmented parent bodies as the origin of asteroid families , 2003, Nature.

[61]  S. Ferraz-Mello,et al.  Origin of the Basaltic Asteroid 1459 Magnya: A Dynamical and Mineralogical Study of the Outer Main Belt , 2002 .

[62]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[63]  R. Clayton,et al.  A New Source of Basaltic Meteorites Inferred from Northwest Africa 011 , 2002, Science.

[64]  Richard P. Binzel,et al.  Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences , 2001 .

[65]  D. Lindstrom,et al.  The South African polymict eucrite Macibini , 2000 .

[66]  Florczak,et al.  Discovery of a basaltic asteroid in the outer main belt , 2000, Science.

[67]  M. Zema,et al.  Order-disorder kinetics in orthopyroxene with exsolution products , 1999 .

[68]  J. Blichert‐Toft,et al.  The Tatahouine diogenite: Mineralogical and chemical effects of sixty‐three years of terrestrial residence , 1999 .

[69]  E. Asphaug Impact origin of the Vesta family , 1997 .

[70]  M. Domeneghetti,et al.  Cooling rates of diogenites: A study of Fe2+‐Mg ordering in orthopyroxene by single‐crystal x‐ray diffraction , 1997 .

[71]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[72]  H. Takeda Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta , 1997 .

[73]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[74]  A. Treiman The parent magmas of the cumulate eucrites: A mass balance approach , 1997 .

[75]  M. Zolensky,et al.  Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon , 1996 .

[76]  T. Hiroi Grain Sizes and Mineral Compositions of Surface Regoliths of Vesta-like Asteroids , 1995 .

[77]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[78]  M. Spilde,et al.  Diogenites as asteroidal cumulates: Insights from orthopyroxene major and minor element chemistry , 1994 .

[79]  T. Hiroi,et al.  Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites , 1994 .

[80]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[81]  N. Boynton,et al.  Minor/major element variation within and among diogenite and howardite orthopyroxenite groups , 1992 .

[82]  E. Jerde,et al.  Composition and origin of Nuevo Laredo Trend eucrites , 1987 .

[83]  H. Takeda,et al.  The nomenclature of polymict basaltic achondrites , 1983 .

[84]  E. Stolper Experimental petrology of eucritic meteorites , 1977 .

[85]  U. Fink,et al.  Infrared spectral observations of asteroid 4 Vesta , 1975 .

[86]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[87]  R. Rowland Mineralogical applications of crystal field theory, 2nd edn, Roger G. Burns (Ed.). Cambridge University Press, London (1969), 224, 80 s , 1970 .

[88]  K. Bryson,et al.  The physical properties of meteorites , 2019, Planetary and Space Science.

[89]  E. Dotto,et al.  Spectral characterization of V-type asteroids – I. Space weathering effects and implications for V-type NEAs , 2016 .

[90]  A. Kryszczyńska,et al.  Spectroscopy and surface properties of (809) Lundia , 2014 .

[91]  Andreas Nathues,et al.  Photometric, spectral phase and temperature effects on 4 Vesta and HED meteorites: Implications for the Dawn mission , 2012 .

[92]  Elsevier Ltd Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[93]  M. Gaffey,et al.  Mineralogy of Asteroid 1459 Magnya and implications for its origin , 2004 .

[94]  Jurgen Rahe,et al.  The NASA planetary data system , 1992 .