The primitive permutation groups of degree less than 2500

Abstract In this paper we use the O'Nan–Scott Theorem and Aschbacher's theorem to classify the primitive permutation groups of degree less than 2500.

[1]  Christoph Jansen,et al.  An Atlas of Brauer Characters , 1995 .

[2]  A. S. Kondrat’ev Linear groups of small degrees over the field of order 2 , 1986 .

[3]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[4]  G. A. Miller On the Primitive Substitution Groups of Degree Fifteen , 1896 .

[5]  G. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[6]  J. Shoven,et al.  Removing the Disincentives for Long Careers in Social Security , 2006 .

[7]  H. H. Mitchell The subgroups of the quaternary abelian linear group , 1914 .

[8]  L. Dickson,et al.  Linear Groups: With an Exposition of the Galois Field Theory , 1902 .

[9]  M. C. Jordan Traite des substitutions et des equations algebriques , 1870 .

[10]  Robert A. Wilson,et al.  The Maximal Subgroups of E6(2) and Aut(E6(2)) , 1990 .

[11]  B. Huppert Endliche Gruppen I , 1967 .

[12]  Bettina Eick,et al.  The Solvable Primitive Permutation Groups of Degree at Most 6560 , 2003 .

[13]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[14]  Howard H. Mitchell,et al.  Determination of the ordinary and modular ternary linear groups , 1911 .

[15]  William M. Kantor Permutation Representations of the Finite Classical Groups of Small Degree or Rank , 1979 .

[16]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[17]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[18]  A. S. Kondrat’ev Irreducible subgroups of the group GL(9,2) , 1986 .

[19]  M. Liebeck On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .

[20]  Cheryl E. Praeger,et al.  A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .

[21]  John D. Dixon,et al.  The primitive permutation groups of degree less than 1000 , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Colva M. Roney-Dougal,et al.  Conjugacy of Subgroups of the General Linear Group , 2004, Exp. Math..

[23]  Derek F. Holt,et al.  Constructing Maximal Subgroups of Classical Groups , 2005, LMS J. Comput. Math..

[24]  Gerhard Hiss,et al.  Low-Dimensional Representations of Quasi-Simple Groups , 2001, LMS J. Comput. Math..

[25]  Colva M. Roney-Dougal,et al.  The affine primitive permutation groups of degree less than 1000 , 2003, J. Symb. Comput..

[26]  F. N. Cole The transitive substitution-groups of nine letters , 1893 .

[27]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[28]  H. Weyl Permutation Groups , 2022 .

[29]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .

[30]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[31]  G. Miller On the Primitive Substitution Groups of Degree Sixteen , 1898 .

[32]  E. O'Brien,et al.  Computational Group Theory , 2006 .

[33]  Gary M. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[34]  Frank Lübeck Small Degree Representations of Finite Chevalley Groups in Defining Characteristic , 2001, LMS J. Comput. Math..

[35]  R. W. Hartley,et al.  Determination of the Ternary Collineation Groups Whose Coefficients Lie in the GF(2 n ) , 1925 .

[36]  Mark W. Short,et al.  The primitive soluble permutation groups of degree less than 256 , 1991, Bulletin of the Australian Mathematical Society.