Dielectric properties of (FeCoCrMnZn)3O4 high-entropy oxide at high pressure

[1]  Jun-chao Zheng,et al.  Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies. , 2023, ACS applied materials & interfaces.

[2]  Chunchang Wang,et al.  Colossal dielectric behavior in Cex(In0.5+Nb0.5)1-xO2 ceramics , 2022, Ceramics International.

[3]  Hao Liu,et al.  Application of impedance spectroscopy in exploring electrical properties of dielectric materials under high pressure , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  Hengzhong Zhang,et al.  Pressure dependence of the electrical conductivities of high-entropy diborides , 2022, Journal of the European Ceramic Society.

[5]  Qinghua Zhang,et al.  High-entropy enhanced capacitive energy storage , 2022, Nature Materials.

[6]  X. Zu,et al.  Electronic Structure Regulation toward the Improvement of the Hydrogenation Properties of TiZrHfMoNb High-Entropy Alloy , 2022, Journal of Alloys and Compounds.

[7]  Yonghao Han,et al.  Pressure effects on the metallization and dielectric properties of GaP. , 2021, Physical chemistry chemical physics : PCCP.

[8]  W. Mao,et al.  Pressure-induced suppression of Jahn–Teller distortions and enhanced electronic properties in high-entropy oxide (Mg0.2Ni0.2Co0.2Zn0.2Cu0.2)O , 2021, Applied Physics Letters.

[9]  H. Ning,et al.  High-Entropy Oxides: Advanced Research on Electrical Properties , 2021, Coatings.

[10]  R. Unocic,et al.  Probing the Local Site Disorder and Distortion in Pyrochlore High-Entropy Oxides. , 2020, Journal of the American Chemical Society.

[11]  Yiliang Wang,et al.  Spinel-Type (FeCoCrMnZn)3O4 High-Entropy Oxide: Facile Preparation and Supercapacitor Performance , 2020, Materials.

[12]  H. Hahn,et al.  Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure , 2020 .

[13]  X. Zu,et al.  Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage , 2020 .

[14]  Qinglin Wang,et al.  Effect of High Pressure on the Dielectric Properties of SrMoO4 , 2020 .

[15]  Yanbin Wang,et al.  Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020) , 2020, High Pressure Research.

[16]  K. Kuramoto,et al.  A new class of spinel high-entropy oxides with controllable magnetic properties , 2020 .

[17]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[18]  J. Kubacki,et al.  Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite , 2019, Scientific Reports.

[19]  H. Hahn,et al.  Pressure-induced tuning of lattice distortion in a high-entropy oxide , 2019, Communications Chemistry.

[20]  M. Kunz,et al.  Stability and Compressibility of Cation-Doped High-Entropy Oxide MgCoNiCuZnO5 , 2019, The Journal of Physical Chemistry C.

[21]  Hanxing Liu,et al.  Origin of low dielectric loss and giant dielectric response in (Nb+Al) co‐doped strontium titanate , 2018 .

[22]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[23]  H. Mao,et al.  Solids, liquids, and gases under high pressure , 2018 .

[24]  Wen-jun Wang,et al.  Ionic transport and dielectric properties in NaNbO3 under high pressure , 2017 .

[25]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[26]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[27]  A. Hossain,et al.  Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4 , 2015 .

[28]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[29]  Qinglin Wang,et al.  Mixed conduction and grain boundary effect in lithium niobate under high pressure , 2015 .

[30]  W. Jo,et al.  Impedance Spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 Ceramics Modified with (K0.5Na0.5)NbO3 , 2014 .

[31]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[32]  Shouguo Huang,et al.  Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures , 2013 .

[33]  K. J. Rao,et al.  Possible mechanism of charge transport and dielectric relaxation in SrO–Bi2O3–B2O3 glasses , 2009 .

[34]  Nobumasa Funamori,et al.  A cubic boron nitride gasket for diamond-anvil experiments. , 2008, The Review of scientific instruments.

[35]  G. Zou,et al.  Thickness measurement of sample in diamond anvil cell. , 2007, The Review of scientific instruments.

[36]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[37]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[38]  S. Saxena,et al.  High pressure Raman spectroscopic study of spinel MgCr 2 O 4 , 2002 .

[39]  S. Lanfredi,et al.  Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature , 2001 .

[40]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[41]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[42]  Baochang Liu,et al.  Deformation behavior of high-entropy oxide (Mg,Co,Ni,Cu,Zn)O under extreme compression , 2022, Scripta Materialia.

[43]  S. V. Narasimhan,et al.  Cation distribution and particle size effect on Raman spectrum of CoFe2O4 , 2011 .

[44]  A. Jonscher Dielectric relaxation in solids , 1983 .