Third generation photovoltaic cells based on photonic crystals

The structural design, physical mechanism and device performance of third-generation photovoltaic cells based on photonic crystals were reviewed.

[1]  K. Ohtaka Energy band of photons and low-energy photon diffraction , 1979 .

[2]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[3]  E. Yablonovitch Statistical ray optics , 1982 .

[4]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[5]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[6]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[7]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[8]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[9]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[10]  S. Chou,et al.  Roller nanoimprint lithography , 1998 .

[11]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[12]  P. Braun,et al.  Microporous materials: Electrochemically grown photonic crystals , 1999, Nature.

[13]  Shui-Tong Lee,et al.  Metal diffusion from electrodes in organic light-emitting diodes , 1999 .

[14]  W. Southwell Omnidirectional mirror design with quarter-wave dielectric stacks. , 1999, Applied optics.

[15]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[16]  S. Noda,et al.  Waveguides and waveguide bends in two-dimensional photonic crystal slabs , 2000 .

[17]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[18]  M. Sigalas,et al.  Inverse Face‐Centered Cubic Thin Film Photonic Crystals , 2001 .

[19]  Hye Jin Lim,et al.  Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals , 2001 .

[20]  A. Birner,et al.  A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon , 2001 .

[21]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[22]  A. Lagendijk,et al.  UvA-DARE ( Digital Academic Repository ) Broadband Fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals , 2017 .

[23]  C. Hwangbo,et al.  Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands. , 2002, Applied optics.

[24]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[25]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[26]  Daozhong Zhang,et al.  Ultrafast three-dimensional tunable photonic crystal , 2003 .

[27]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[28]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[29]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[30]  J. Schoonman,et al.  The application of inverse titania opals in nanostructured solar cells , 2004 .

[31]  T. Mallouk,et al.  Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. , 2005, The journal of physical chemistry. B.

[32]  M. Sorel,et al.  Photonic crystal and photonic wire nano-photonics based on silicon-on-insulator , 2006 .

[33]  Q. Shen,et al.  High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells , 2007 .

[34]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[35]  Y. Chiang,et al.  Dielectric Band Edge Enhancement of Energy Conversion Efficiency in Photonic Crystal Dye-Sensitized Solar Cell , 2008 .

[36]  F. J. López-Alcaraz,et al.  Nanoparticle-based One-dimensional Photonic Crystals , 2022 .

[37]  W. Vervisch,et al.  Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells , 2008 .

[38]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .

[39]  T. Mallouk,et al.  Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. , 2008, The journal of physical chemistry. B.

[40]  J. Anta,et al.  Spectral Response of Opal-Based Dye-Sensitized Solar Cells , 2008 .

[41]  A. Kaminski,et al.  Absorption enhancement using photonic crystals for silicon thin film solar cells. , 2009, Optics express.

[42]  M. Calvo,et al.  Control over the structural and optical features of nanoparticle-based one-dimensional photonic crystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[43]  G. Boschloo,et al.  Porous One‐Dimensional Photonic Crystals Improve the Power‐Conversion Efficiency of Dye‐Sensitized Solar Cells , 2009 .

[44]  R. Vijaya,et al.  Photonic crystal sensors: An overview , 2010 .

[45]  L. Halaoui,et al.  Enhanced Conversion of Light at TiO2 Photonic Crystals to the Blue of a Stop Band and at TiO2 Random Films Sensitized with Q-CdS: Order and Disorder , 2010 .

[46]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[47]  E. Drouard,et al.  Light harvesting in organic solar cells , 2010 .

[48]  Jensen Li,et al.  Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye‐Sensitized Solar Cell: A Single‐Step Approach , 2011, Advanced materials.

[49]  S. Cronin,et al.  Plasmon resonant enhancement of dye sensitized solar cells , 2011 .

[50]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[51]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[52]  Hyunjung Lee,et al.  Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres , 2011 .

[53]  U. Wiesner,et al.  Tunable Mesoporous Bragg Reflectors Based on Block‐Copolymer Self‐Assembly , 2011, Advanced materials.

[54]  J. Moon,et al.  Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[55]  A. Tok,et al.  TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications , 2011 .

[56]  J. Moon,et al.  Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[57]  S. Asher,et al.  Periodicity-controlled two-dimensional crystalline colloidal arrays. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[58]  Hui Joon Park,et al.  Photonic color filters integrated with organic solar cells for energy harvesting. , 2011, ACS nano.

[59]  P. Braun,et al.  Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. , 2011, Angewandte Chemie.

[60]  Fanxu Meng,et al.  Performance improvement of inverted polymer solar cells thermally evaporating nickel oxide as an anode buffer layer , 2012 .

[61]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[62]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[63]  Robert A. Taylor,et al.  Nanofluid-based optical filter optimization for PV/T systems , 2012, Light: Science & Applications.

[64]  Fanxu Meng,et al.  Semitransparent polymer solar cells with one-dimensional (WO3/LiF)N photonic crystals , 2012 .

[65]  Haitao Huang,et al.  Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell , 2012 .

[66]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[67]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[68]  O. Inganäs,et al.  Semi‐Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency , 2012 .

[69]  A. Jen,et al.  Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications , 2012 .

[70]  Optimized photonic crystal structure for DSSC , 2012 .

[71]  Efficiency Enhancement in Dye-Sensitized Solar Cells by Three-Dimensional Photonic Crystals , 2012 .

[72]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[73]  A. Jen,et al.  A Versatile Fluoro‐Containing Low‐Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells , 2013 .

[74]  G. Ozin,et al.  See‐Through Dye‐Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics , 2013, Advanced materials.

[75]  Gang Li,et al.  High-performance semi-transparent polymer solar cells possessing tandem structures , 2013 .

[76]  M. Halik,et al.  ITO‐Free and Fully Solution‐Processed Semitransparent Organic Solar Cells with High Fill Factors , 2013 .

[77]  D. Hwang,et al.  Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal , 2013 .

[78]  A. Llobera,et al.  Light spectral filtering based on spatial adiabatic passage , 2013 .

[79]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[80]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[81]  J. Martorell,et al.  Transparent polymer solar cells employing a layered light-trapping architecture , 2013, Nature Photonics.

[82]  Yan-Qing Li,et al.  Enhanced performance of semitransparent inverted organic photovoltaic devices via a high reflector structure. , 2013, ACS applied materials & interfaces.

[83]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[84]  F. Krebs,et al.  Flexible ITO‐free polymer solar cells , 2013 .

[85]  J. Moon,et al.  ZnO-treated TiO2 inverse opal electrodes for dye-sensitized solar cells , 2013 .

[86]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[87]  E. Drouard,et al.  Photonic crystals and optical mode engineering for thin film photovoltaics. , 2013, Optics express.

[88]  A. Jen,et al.  Toward High‐Performance Semi‐Transparent Polymer Solar Cells: Optimization of Ultra‐Thin Light Absorbing Layer and Transparent Cathode Architecture , 2013 .

[89]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[90]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[91]  Young Chan Kim,et al.  Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors , 2014, Light: Science & Applications.

[92]  S. Ruan,et al.  Performance improvement of inverted polymer solar cells thermally evaporating CuI as an anode buffer layer , 2014 .

[93]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[94]  Yanhong Luo,et al.  CdS/CdSe Co-Sensitized Solar Cells Based on a New SnO2 Photoanode with a Three-Dimensionally Interconnected Ordered Porous Structure , 2014 .

[95]  S. Burger,et al.  5 × 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields , 2014, Scientific Reports.

[96]  Haitao Huang,et al.  A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal. , 2014, Nanoscale.

[97]  Yanhong Luo,et al.  Study on negative incident photon-to-electron conversion efficiency of quantum dot-sensitized solar cells. , 2014, The Review of scientific instruments.

[98]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[99]  Francisco J. Rodríguez,et al.  Light coupling into the Whispering Gallery Modes of a fiber array thin film solar cell for fixed partial Sun tracking , 2014, Scientific Reports.

[100]  A. Jen,et al.  Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy , 2014 .

[101]  R. Biswas,et al.  Nanophotonic Organic Solar Cell Architecture for Advanced Light Trapping with Dual Photonic Crystals , 2014 .

[102]  Hongwei Sun,et al.  Semitransparent polymer solar cells with 5% power conversion efficiency using photonic crystal reflector. , 2014, ACS applied materials & interfaces.

[103]  Haitao Huang,et al.  Aperiodic TiO2 Nanotube Photonic Crystal: Full-Visible-Spectrum Solar Light Harvesting in Photovoltaic Devices , 2014, Scientific Reports.

[104]  Yongbing Long,et al.  Light harvesting enhancement toward low IPCE region of semitransparent polymer solar cells via one-dimensional photonic crystal reflectors , 2014 .

[105]  S. Jenekhe,et al.  All‐Polymer Bulk Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Co‐Solvent , 2014, Advanced materials.

[106]  Matthew C Beard,et al.  The promise and challenge of nanostructured solar cells. , 2014, Nature nanotechnology.

[107]  Yongbing Long,et al.  Highly efficient and high transmittance semitransparent polymer solar cells with one-dimensional photonic crystals as distributed Bragg reflectors , 2014 .

[108]  H. Míguez,et al.  Panchromatic porous specular back reflectors for efficient transparent dye solar cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c3cp53939c Click here for additional data file. , 2013, Physical chemistry chemical physics : PCCP.

[109]  Wei Huang,et al.  The study of defect state of 2,7-dipyrenyl-9-phenyl-9-pyrenyl fluorene through admittance spectroscopy , 2014 .

[110]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[111]  N. Bonod,et al.  Self‐Assembled Plasmonic Oligomers for Organic Photovoltaics , 2014 .

[112]  Steven G. Johnson,et al.  Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization , 2015, 1505.02880.

[113]  D. Comoretto Organic and Hybrid Photonic Crystals , 2015 .

[114]  D. Duché,et al.  Photonic crystals for improving light absorption in organic solar cells , 2015 .

[115]  Haitao Huang,et al.  Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal , 2015 .

[116]  S. Ruan,et al.  Improved color rendering index of low band gap semi-transparent polymer solar cells using one-dimensional photonic crystals , 2015 .

[117]  J. Moon,et al.  Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications. , 2015, Nanoscale.

[118]  L. Guo,et al.  Colored, see-through perovskite solar cells employing an optical cavity , 2015 .

[119]  Yongbing Long,et al.  Semitransparent polymer solar cells with simultaneously improved efficiency and color rendering index. , 2015, Physical chemistry chemical physics : PCCP.

[120]  Haitao Huang,et al.  Photonic crystals for sensitized solar cells: fabrication, properties, and applications , 2015 .

[121]  Yongbing Long,et al.  Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal. , 2015, ACS applied materials & interfaces.

[122]  Yanxia Cui,et al.  Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application. , 2015, Applied optics.

[123]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[124]  Yan Yao,et al.  Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. , 2015, ACS nano.

[125]  Yanhong Luo,et al.  Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell , 2016 .

[126]  Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells , 2016 .

[127]  Yong Cao,et al.  Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT:PSS layer , 2016 .

[128]  J. Bravo-Abad,et al.  Intermittent chaos for ergodic light trapping in a photonic fiber plate , 2016, Light: Science & Applications.

[129]  Longlong Wu,et al.  Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films. , 2016, Nano letters.

[130]  D. Yoo,et al.  Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. , 2016, Small.

[131]  Yaowen Li,et al.  High‐Performance Colorful Semitransparent Polymer Solar Cells with Ultrathin Hybrid‐Metal Electrodes and Fine‐Tuned Dielectric Mirrors , 2017 .

[132]  Zin Lin,et al.  Inverse designed photonic fibers and metasurfaces for nonlinear frequency conversion , 2017, 1711.07810.

[133]  J. Moon,et al.  Monolithic Two-Dimensional Photonic Crystal Reflectors for the Fabrication of Highly Efficient and Highly Transparent Dye-Sensitized Solar Cells. , 2017, ACS Applied Materials and Interfaces.

[134]  Yanxia Cui,et al.  Profiling Light Absorption Enhancement in Two-Dimensional Photonic-Structured Perovskite Solar Cells , 2017, IEEE Journal of Photovoltaics.

[135]  Maximilian T. Hörantner,et al.  Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching , 2017 .

[136]  B. Rech,et al.  Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells , 2017 .

[137]  Guoxin Wang,et al.  High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance. , 2018, ACS applied materials & interfaces.

[138]  H. Su,et al.  Coupling plasmonic nanoparticles with TiO2 nanotube photonic crystals for enhanced dye-sensitized solar cells performance , 2018 .

[139]  S. Forrest,et al.  Continuous roll-to-roll fabrication of organic photovoltaic cells via interconnected high-vacuum and low-pressure organic vapor phase deposition systems , 2018, Applied Physics Letters.

[140]  R. Demadrille,et al.  Increasing the Efficiency of Organic Dye‐Sensitized Solar Cells over 10.3% Using Locally Ordered Inverse Opal Nanostructures in the Photoelectrode , 2018 .

[141]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[142]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[143]  Shinuk Cho,et al.  Semi‐transparent plastic solar cell based on oxide‐metal‐oxide multilayer electrodes , 2018 .