Automatic construction of personalized customer interfaces

Interface personalization can improve a user's performance and subjective impression of interface quality and responsiveness. Personalization is difficult to implement as it requires an accurate model of a user's intentions and a formal model of how an interface meets a user's need. We present a novel model for tractable inference of consumer intentions in the context of grocery shopping. The model makes unique use of a priori temporal relations to simplify inference. We then present a simple interface generation framework that was inspired by viewing user interface interaction as a channel coding problem. The resulting model defines a simplified but clear notion of a user's utility for an interface. We demonstrate the effectiveness of the research prototype on some simple data, and explain how the model can be augmented with richer user modeling to create a deployable application.

[1]  Anton Riabov,et al.  Planning for Stream Processing Systems , 2005, AAAI.

[2]  H. Albert Napier,et al.  Predicting the Skilled Use of Hierarchical Menus With the Keystroke-Level Model , 1993, Hum. Comput. Interact..

[3]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[4]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[5]  Claire Mathieu,et al.  SC-2 00 202 Huffman Coding with Unequal Letter Costs [ Extended Abstract ] , 2002 .

[6]  Scott R. Klemmer,et al.  The future of user interface design tools , 2005, CHI EA '05.

[7]  Sunil Gupta Impact of Sales Promotions on when, what, and how Much to Buy , 1988 .

[8]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[9]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[10]  John R. Hauser,et al.  Fast Polyhedral Adaptive Conjoint Estimation , 2002 .

[11]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[12]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[13]  Krzysztof Z. Gajos,et al.  SUPPLE: automatically generating user interfaces , 2004, IUI '04.

[14]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[15]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[16]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[17]  Jeffrey Nichols,et al.  Automatic Interface Generation and Future User Interface Tools , 2005 .

[18]  Barry Smyth,et al.  Intelligent Navigation for Mobile Internet Portals , 2003 .

[19]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[20]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[21]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[22]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[23]  Barry Smyth,et al.  Trust in recommender systems , 2005, IUI.

[24]  Daniel Billsus,et al.  Improving proactive information systems , 2005, IUI '05.

[25]  Eugene Volokh,et al.  Personalization and privacy , 2000, CACM.

[26]  Claudia Löbbecke Emerging Information System Applications in Brick-and-Mortar Supermarkets: A Case Study of Content Provision Devices and RFID-Based Implementations , 2005, PACIS.

[27]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.