Metric extension operators, vertex sparsifiers and Lipschitz extendability

We study vertex cut and flow sparsifiers that were recently introduced by Moitra, and Leighton and Moitra. We improve and generalize their results. We give a new polynomial-time algorithm for constructing $O(\log k / \log \log k)$ cut and flow sparsifiers, matching the best known existential upper bound on the quality of a sparsifier, and improving the previous algorithmic upper bound of $O(\log^2 k / \log \log k)$. We show that flow sparsifiers can be obtained from linear operators approximating minimum metric extensions. We introduce the notion of (linear) metric extension operators, prove that they exist, and give an exact polynomial-time algorithm for finding optimal operators. We then establish a direct connection between flow and cut sparsifiers and Lipschitz extendability of maps in Banach spaces, a notion studied in functional analysis since 1950s. Using this connection, we obtain a lower bound of $\Omega(\sqrt{\log k/\log\log k})$ for flow sparsifiers and a lower bound of $\Omega(\sqrt{\log k}/\log\log k)$ for cut sparsifiers. We show that if a certain open question posed by Ball in 1992 has a positive answer, then there exist $\tilde O(\sqrt{\log k})$ cut sparsifiers. On the other hand, any lower bound on cut sparsifiers better than $\tilde \Omega(\sqrt{\log k})$ would imply a negative answer to this question.

[1]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[2]  U. Haagerup The best constants in the Khintchine inequality , 1981 .

[3]  M. Sion On general minimax theorems , 1958 .

[4]  J. Lindenstrauss,et al.  Extensions of lipschitz maps into Banach spaces , 1986 .

[5]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[6]  Kunal Talwar,et al.  An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.

[7]  James R. Lee,et al.  Fréchet Embeddings of Negative Type Metrics , 2007, Discret. Comput. Geom..

[8]  Frank Thomson Leighton,et al.  Extensions and limits to vertex sparsification , 2010, STOC '10.

[9]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[10]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[11]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Assaf Naor,et al.  Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.

[14]  Yuval Rabani,et al.  Approximation algorithms for the 0-extension problem , 2001, SODA '01.

[15]  Satish Rao,et al.  An improved approximation algorithm for the 0-extension problem , 2003, SODA '03.

[16]  G. Pisier,et al.  Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .

[17]  J. Bourgain A counterexample to a complementation problem , 1981 .

[18]  Ankur Moitra,et al.  Approximation Algorithms for Multicommodity-Type Problems with Guarantees Independent of the Graph Size , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[20]  Alexander Brudnyi,et al.  Extensions of Lipschitz Maps , 2012 .

[21]  G. Lewicki Minimal extensions in tensor product spaces , 1999 .

[22]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[23]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[24]  Harald Räcke,et al.  Optimal hierarchical decompositions for congestion minimization in networks , 2008, STOC.

[25]  James R. Lee,et al.  Genus and the geometry of the cut graph , 2010, SODA '10.

[26]  Gideon Schechtman,et al.  Factorizations of natural embeddings of $l^{n}_{p}$ into $L_{r}$, I , 1988 .

[27]  A. Beck,et al.  Conference on Modern Analysis and Probability , 1984 .

[28]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[29]  Frank Thomson Leighton,et al.  Vertex Sparsifiers and Abstract Rounding Algorithms , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[30]  Robert Krauthgamer,et al.  Vertex Sparsifiers: New Results from Old Techniques , 2010, APPROX-RANDOM.

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .