Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts.

Ultrathin oxide films on metals offer new opportunities for the design of supported nanoclusters with potential use in catalysis. This requires a characterization at the atomistic level of the structure and composition of the thin film, of its morphology and defect structure. A proper selection of metal/oxide interface, film thickness, lattice mismatch, etc. makes it possible to prepare collections of supported metal particles with novel properties. This critical review describes some illustrative examples, emphasizes the role of the interplay between theory and experiment, and relates some recent findings related to the possibility to control the charge state of a supported nanoparticle on an ultrathin oxide film (211 references).

[1]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[2]  J. Heidberg,et al.  The monolayer CO adsorbed on MgO(100) detected by polarization infrared spectroscopy , 1995 .

[3]  H. Freund,et al.  Adsorption of CO and NO on NiO and CoO: a comparison , 1996 .

[4]  M. Bäumer,et al.  The growth and properties of Pd and Pt on Al2O3/NiAl(110) , 1995 .

[5]  L. Giordano,et al.  Charge transfers at metal/oxide interfaces: a DFT study of formation of Kδ+ and Auδ− species on MgO/Ag(100) ultra-thin films from deposition of neutral atoms , 2006 .

[6]  O. Brotzen,et al.  Vanadium Pentoxide - a Compound with Five-Coordinated Vanadium Atoms. , 1950 .

[7]  D. Goodman,et al.  XPS characterization of ultra-thin MgO films on a Mo(100) surface , 1994 .

[8]  M. Bäumer,et al.  The Structure and Reactivity of Al2O3-Supported Cobalt−Palladium Particles: A CO-TPD, STM, and XPS Study , 2003 .

[9]  M. Bäumer,et al.  Morphological and electronic properties of ultrathin crystalline silica epilayers on a Mo(112) substrate , 2002 .

[10]  Matthias Fischer,et al.  Direct observation of key reaction intermediates on gold clusters. , 2003, Journal of the American Chemical Society.

[11]  M. Sierka,et al.  Synthesis and structure of ultrathin aluminosilicate films. , 2006, Angewandte Chemie.

[12]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[13]  M. Bäumer,et al.  Hydroxy1 driven reconstruction of the polar NiO(111) surface , 1994 .

[14]  C. A. Estrada,et al.  CO adsorption on ultrathin MgO films grown on a Mo(100) surface: an IRAS study , 1992 .

[15]  H. Freund Introductory Lecture: Oxide surfaces , 1999 .

[16]  G. Somorjai,et al.  Growth, structure and chemical properties of FeO overlayers on Pt(100) and Pt(111) , 1992 .

[17]  H. Freund,et al.  Adsorption of water on thin V2O3(0001) films , 2006 .

[18]  W. Ranke,et al.  Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED , 1998 .

[19]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[20]  Andrew Zangwill Physics at Surfaces , 1988 .

[21]  G. Pacchioni Oxygen vacancy: the invisible agent on oxide surfaces. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  G. Hamm,et al.  Bimetallic Pd–Au nanocluster arrays grown on nanostructured alumina templates , 2006 .

[23]  Neumann,et al.  Molecular adsorption on oxide surfaces: Electronic structure and orientation of NO on NiO(100)/Ni(100) and on NiO(100) as determined from electron spectroscopies and ab initio cluster calculations. , 1991, Physical review. B, Condensed matter.

[24]  W. Ernst,et al.  Defects in epitaxial insulating thin films , 1999 .

[25]  G. Somorjai,et al.  The preparation and reactivity of thin, ordered films of vanadium oxide on Au(111) , 1990 .

[26]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[27]  A. Bogicevic,et al.  Role of surface vacancies and water products in metal nucleation: Pt/MgO(100) , 1999 .

[28]  T. Risse,et al.  Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. , 2005, Physical review letters.

[29]  S. Linic,et al.  Oxidation catalysis by oxide-supported Au nanostructures: the role of supports and the effect of external conditions. , 2006, Physical review letters.

[30]  H. Freund,et al.  Properties and identification of oxygen sites at the V_2O_5(010) surface: theoretical cluster studies and photoemission experiments , 1999 .

[31]  H. Freund,et al.  Electronic surface states of CoO(100): an electron energy loss study , 1995 .

[32]  A. Rosenhahn,et al.  Interaction of oxygen with Ni3Al(111) at 300 K and 1000 K , 1999 .

[33]  The hematite (Alpha-Fe_2O_3)(0001) surface: Evidence for domains of distinct chemistry , 1998, cond-mat/9807202.

[34]  H. Freund,et al.  Electronic surface state of NiO (100) , 1993 .

[35]  G. Kresse,et al.  V2O3(0001) surface terminations: from oxygen- to vanadium-rich , 2004 .

[36]  H. Freund,et al.  Unusual state of adsorbed CO : CO(√3×√3)R30°/Cr2O3(111) , 1991 .

[37]  M. Bäumer,et al.  On the thermal stability of metal particles supported on a thin alumina film , 2003 .

[38]  L. Giordano,et al.  Palladium monomers, dimers, and trimers on the MgO(001) surface viewed individually. , 2007, Angewandte Chemie.

[39]  B. Simard,et al.  Gold cluster carbonyls: vibrational spectroscopy of the anions and the effects of cluster size, charge, and coverage on the CO stretching frequency. , 2005, The journal of physical chemistry. B.

[40]  W. Ernst,et al.  Mechanism and kinetics of color center formation on epitaxial thin films of MgO , 2002 .

[41]  Hans-Joachim Freund,et al.  Palladium Nanocrystals on Al 2 O 3 : Structure and Adhesion Energy , 1999 .

[42]  P. Sautet,et al.  Au atoms and dimers on the MgO(100) surface: a DFT study of nucleation at defects. , 2005, The journal of physical chemistry. B.

[43]  L. Giordano,et al.  Control of the charge state of metal atoms on thin MgO films. , 2007, Physical review letters.

[44]  Al2O3-films on Ni3Al(111): a template for nanostructured cluster growth , 2002 .

[45]  T. Schroeder EPITAXIAL GROWTH OF SiO2 ON Mo(112) , 2000 .

[46]  M Schmid,et al.  Oxygen-deficient line defects in an ultrathin aluminum oxide film. , 2006, Physical review letters.

[47]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[48]  H. Freund Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports , 2007 .

[49]  F. Netzer,et al.  Adsorption and reaction of CO on vanadium oxide–Pd(111) “inverse” model catalysts: an HREELS study , 2000 .

[50]  J. Galy,et al.  A refinement of the structure of V2O5 , 1986 .

[51]  G. Pacchioni,et al.  Chemisorption of CO on defect sites of MgO , 1992 .

[52]  J. M. Sturm,et al.  Growth and Characterization of Ultrathin V2Oy (y ≈ 5) Films on Au(111) , 2008 .

[53]  H. Freund,et al.  Surface-bonded precursor determines particle size effects for alkene hydrogenation on palladium. , 2005, Angewandte Chemie.

[54]  Hannu Häkkinen,et al.  Catalytic CO oxidation by free Au2-: experiment and theory. , 2003, Journal of the American Chemical Society.

[55]  D. Goodman,et al.  Catalytically active gold: from nanoparticles to ultrathin films. , 2006, Accounts of chemical research.

[56]  M. Bäumer,et al.  Preparation and characterization of a model bimetallic catalyst: Co-Pd nanoparticles supported on Al2O3. , 2002, Angewandte Chemie.

[57]  L. Hammer,et al.  Erratum to: “Strong relaxations a the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations” [Surf. Sci. 372 (1997) L291] , 1997 .

[58]  T. Risse,et al.  Low temperature infrared spectra of CO adsorbed on the surface of MgO(001) thin films , 2005 .

[59]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[60]  R. Gurney Theory of Electrical Double Layers in Adsorbed Films , 1935 .

[61]  F. Sedona,et al.  Ultrathin wagon-wheel-like TiOx phases on Pt(111): a combined low-energy electron diffraction and scanning tunneling microscopy investigation. , 2006, The journal of physical chemistry. B.

[62]  G. Somorjai,et al.  Structure, composition and chemisorption studies of thin ordered iron oxide films on platinum (111) , 1988 .

[63]  H. Freund Adsorption of Gases on Solid Surfaces , 1995 .

[64]  K. Honkala,et al.  Au Adsorption on Regular and Defected Thin MgO(100) Films Supported by Mo , 2007 .

[65]  J. Toennies,et al.  Structure and dynamics of {CO}/{MgO(001) }: a helium atom scattering study , 1995 .

[66]  Theory of the scanning tunneling microscope , 1985 .

[67]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[68]  S. Giorgio,et al.  Structure and deformations of Pd-Ni core-shell nanoparticles. , 2005, The journal of physical chemistry. B.

[69]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[70]  C. Truong,et al.  Nature of active sites in the oxidative coupling of methane to ethane over Li/MgO catalysts , 1993 .

[71]  T. Risse,et al.  Interaction of gold clusters with color centers on MgO(001) films. , 2006, Angewandte Chemie.

[72]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[73]  V. Dravid,et al.  Direct evidence of oxidized gold on supported gold catalysts. , 2005, The journal of physical chemistry. B.

[74]  M. Bäumer,et al.  Metal Atoms and Particles on Oxide Supports: Probing Structure and Charge by Infrared Spectroscopy , 2001 .

[75]  F. Netzer,et al.  Nature, growth, and stability of vanadium oxides on Pd(111) , 1999 .

[76]  D. Goodman,et al.  The interaction of water with silica thin films grown on Mo(1 1 2) , 2004 .

[77]  H. Freund,et al.  Surface potential of a polar oxide film: FeO on Pt(111) , 2005 .

[78]  H. Freund,et al.  Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). , 2003, Physical review letters.

[79]  H. Freund,et al.  Nucleation and growth of gold on MgO thin films: A combined STM and luminescence study , 2007 .

[80]  Gianfranco Pacchioni,et al.  Characterization of oxide surfaces by infrared spectroscopy of adsorbed carbon monoxide: a theoretical investigation of the frequency shift of CO on MgO and NiO , 1991 .

[81]  K. Schierbaum,et al.  Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation. , 2005, The journal of physical chemistry. B.

[82]  J. Suzanne,et al.  CO adsorbed on MgO(100): a high resolution LEED study , 1992 .

[83]  S. Valeri,et al.  Experimental and theoretical study of the MgO/Ag(0 0 1) interface , 2002 .

[84]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[85]  D. W. Goodman,et al.  Interfacial reactions between oxide films and refractory metal substrates , 1996 .

[86]  Hans-Christoph Ploigt,et al.  Local work function changes determined by field emission resonances: NaCl/Ag(100) , 2007 .

[87]  B. D. Kay,et al.  Physisorption of CO on the MgO(100) Surface , 2001 .

[88]  D. Goodman,et al.  On the origin of the unique properties of supported Au nanoparticles. , 2006, Journal of the American Chemical Society.

[89]  H. Freund,et al.  Isomerization and Hydrogenation of cis-2-Butene on Pd Model Catalyst , 2008 .

[90]  H. Freund,et al.  Site occupation and activity of catalyst nanoparticles monitored by in situ vibrational spectroscopy. , 2003, Angewandte Chemie.

[91]  G. Kresse,et al.  Novel interface-mediated metastable oxide phases: vanadium oxides on Pd(111). , 2001, Physical review letters.

[92]  N. Rösch,et al.  CO adsorption on Ni4 and Ni8 clusters deposited on regular and defect sites of the MgO(001) surface , 2005 .

[93]  L. Giordano,et al.  Tuning the surface metal work function by deposition of ultrathin oxide films: Density functional calculations , 2006 .

[94]  L. Giordano,et al.  Structure and vibrational spectra of crystalline SiO2 ultra-thin films on Mo(112) , 2005 .

[95]  D. Goodman,et al.  Catalytically active gold: The role of cluster morphology , 2005 .

[96]  C. A. Estrada,et al.  CO interaction with ultrathin MgO films on a Mo(100) surface studied by infrared reflection–absorption spectroscopy, temperature programmed desorption, and x‐ray photoelectron spectroscopy , 1992 .

[97]  K. Schierbaum,et al.  Core and Valence Band Photoemission Spectroscopy of Well-Ordered Ultrathin TiOx Films on Pt(111) , 2007 .

[98]  M. Hove,et al.  INTERLAYER INTERACTIONS IN EPITAXIAL OXIDE GROWTH: FEO ON PT(111) , 1997 .

[99]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[100]  A. Maiti,et al.  Activation of gold on titania: adsorption and reaction of SO(2) on Au/TiO(2)(110). , 2002, Journal of the American Chemical Society.

[101]  T. Risse,et al.  Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension , 2003 .

[102]  G. Spoto,et al.  The IR spectra of Mg5C2+(CO) complexes on the (001) surfaces of polycrystalline and single crystal MgO , 2003 .

[103]  B. D. Kay,et al.  n-alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n-butane. , 2005, The Journal of chemical physics.

[104]  Hongjun Gao,et al.  Atomic structure of a thin silica film on a Mo(112) substrate: A combined experimental and theoretical study , 2006 .

[105]  H. Freund Clusters and islands on oxides: from catalysis via electronics and magnetism to optics , 2002 .

[106]  G. Renaud Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering , 1998 .

[107]  Matthias Scheffler,et al.  First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. , 2003, Physical review letters.

[108]  D. King,et al.  Origin and activity of oxidized gold in water-gas-shift catalysis. , 2005, Physical review letters.

[109]  C. Noguera,et al.  Electronic States and Schottky Barrier Height at Metal/MgO(100) Interfaces , 2004 .

[110]  M. V. Ganduglia-Pirovano,et al.  Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. , 2007, Physical review letters.

[111]  T. Orzali,et al.  Bottom-up assembly of single-domain titania nanosheets on (1 x 2)-Pt(110). , 2006, Physical review letters.

[112]  J. M. Sturm,et al.  Well-ordered V2O5(001) thin films on Au(111): Growth and thermal stability , 2008 .

[113]  D. Goodman Model catalysts: from imagining to imaging a working surface , 2003 .

[114]  M. V. Ganduglia-Pirovano,et al.  Low temperature adsorption of oxygen on reduced V2O3(0001) surfaces , 2006 .

[115]  H. Freund,et al.  Catalytic activity and poisoning of specific sites on supported metal nanoparticles. , 2002, Angewandte Chemie.

[116]  T. Risse,et al.  Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. , 2006, The journal of physical chemistry. B.

[117]  M. Bäumer,et al.  Metal deposits on well-ordered oxide films , 1999 .

[118]  E. Wimmer,et al.  Ab initio thermodynamics of oxide surfaces: O 2 on Fe 2 O 3 (0001) , 2004 .

[119]  C. A. Estrada,et al.  Synthesis and characterization of ultra-thin MgO films on Mo(100) , 1991 .

[120]  Sautet,et al.  Structure and contrast in scanning tunneling microscopy of oxides: FeO monolayer on Pt(111). , 1996, Physical review. B, Condensed matter.

[121]  W. Ranke,et al.  Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers , 2002 .

[122]  M. Fanetti,et al.  Ordered arrays of Au nanoclusters by TiOx ultrathin templates on Pt(111) , 2007 .

[123]  Wu,et al.  Electron-energy-loss-spectroscopy studies of thermally generated defects in pure and lithium-doped MgO(100) films on Mo(100). , 1992, Physical review. B, Condensed matter.

[124]  B. Hammer,et al.  The activity of the tetrahedral Au20 cluster: charging and impurity effects , 2005 .

[125]  A. De Vita,et al.  Insulator at the ultrathin limit: MgO on Ag(001). , 2001, Physical review letters.

[126]  N. Rösch,et al.  Acetylene cyclotrimerization on supported size-selected Pd-n clusters (1 <= n <= 30): one atom is enough! , 2000 .

[127]  M. Persson,et al.  STM Images and Chemisorption Bond Parameters of Acetylene, Ethynyl, and Dicarbon Chemisorbed on Copper† , 2002 .

[128]  Hans-Joachim Freund,et al.  Structure and defects of an ordered alumina film on NiAl(110) , 1994 .

[129]  T. Risse,et al.  Electron paramagnetic resonance and scanning tunneling microscopy investigations on the formation of F(+) and F(0) Color centers on the surface of thin MgO(001) films. , 2006, The journal of physical chemistry. B.

[130]  Klaus Kern,et al.  Nucleation and growth of supported clusters at defect sites: Pd/MgO(001) , 2000 .

[131]  D. Goodman Model Catalysts: from Extended Single Crystals to Supported Particles , 1995 .

[132]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[133]  M. Wuttig,et al.  Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110) , 1991 .

[134]  H. Freund,et al.  Local band gap modulations in non-stoichiometric V2O3 films probed by scanning tunneling spectroscopy , 2008 .

[135]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[136]  David Thompson,et al.  Catalysis By Gold , 1999 .

[137]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[138]  T. Risse,et al.  Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. , 2007, Physical review letters.

[139]  H. Freund,et al.  Alkene chemistry on the palladium surface: nanoparticles vs single crystals , 2004 .

[140]  G. Ertl,et al.  Catalysis and Surface Science , 1999 .

[141]  L. Giordano,et al.  Charging of metal atoms on ultrathin MgO/Mo(100) films. , 2005, Physical review letters.

[142]  H. Freund,et al.  Thermodesorption of CO and NO from Vacuum-Cleaved NiO(100) and MgO(100) , 1999 .

[143]  H. Freund,et al.  Self-organization of gold atoms on a polar FeO(111) surface. , 2005, Physical review letters.

[144]  H. Freund Adsorption of Gases on Complex Solid Surfaces , 1997 .

[145]  G. Pacchioni,et al.  Structure of ultrathin crystalline SiO2 films on Mo(112) , 2004 .

[146]  J. Nørskov,et al.  Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). , 2003, Physical review letters.

[147]  G. Kresse,et al.  Novel Interface-Mediated Metastable Oxide Phases , 2001 .

[148]  H. Freund,et al.  Molecular beam experiments on model catalysts , 2005 .

[149]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[150]  D. Goodman,et al.  The preparation and characterization of ultra-thin silicon dioxide films on a Mo(110) surface , 1993 .

[151]  M Schmid,et al.  Nanotemplate with holes: ultrathin alumina on Ni3Al(111). , 2007, Physical review letters.

[152]  U. Landman,et al.  Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. , 2006, Physical review letters.

[153]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[154]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[155]  G. Pacchioni,et al.  Charging of Au atoms on TiO2 thin films from CO vibrational spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[156]  H. Freund,et al.  Low temperature decomposition of NO on ordered alumina films , 2003 .

[157]  C. A. Estrada,et al.  Model surface studies of metal oxides : adsorption of water and methanol on ultrathin MgO films on Mo(100) , 1992 .

[158]  H. Freund,et al.  Influence of the metal substrate on the adsorption properties of thin oxide layers: Au atoms on a thin alumina film on NiAl(110). , 2006, Physical review letters.

[159]  H. Freund,et al.  TDS study of the bonding of CO and NO to vacuum-cleaved NiO(100) , 1999 .

[160]  B. D. Kay,et al.  n-alkanes on MgO(100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes. , 2005, The Journal of chemical physics.

[161]  Wu,et al.  New approach to high-resolution electron-energy-loss spectroscopy of polar materials: Studies of water and methanol adsorption on ultrathin MgO(100) films. , 1991, Physical review letters.

[162]  H. Freund,et al.  NO on CoO(111)Co(0001): hydroxyl assisted adsorption , 1995 .

[163]  D. W. Goodman,et al.  X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface , 1992 .

[164]  C. Lamberti,et al.  Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances , 2004 .

[165]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[166]  G. Pacchioni,et al.  Structure and stability of oxygen vacancies on sub-surface, terraces, and low-coordinated surface sites of MgO: an ab initio study , 1998 .

[167]  B. Gates,et al.  Gold Nanoclusters Supported on MgO: Synthesis, Characterization, and Evidence of Au6 , 2001 .

[168]  H. Freund,et al.  Hydroxyl groups on oxide surfaces: NiO(100), NiO(111) and Cr2O3(111) , 1993 .

[169]  L. Giordano,et al.  Observable consequences of formation of Au anions from deposition of Au atoms on ultrathin oxide films. , 2007, The Journal of chemical physics.

[170]  G. Pacchioni,et al.  Metal Deposition on Oxide Surfaces: A Quantum-Chemical Study of the Interaction of Rb, Pd, and Ag Atoms with the Surface Vacancies of MgO , 1996 .

[171]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[172]  C. Truong,et al.  Role of F centers in the oxidative coupling of methane to ethane over lithium-promoted magnesium oxide catalysts , 1992 .

[173]  A. Rosenhahn,et al.  Oxidation of Ni3Al(111) at 600, 800, and 1050 K investigated by scanning tunneling microscopy , 2000 .

[174]  H. Freund,et al.  Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? , 2003, Angewandte Chemie.

[175]  L. Giordano,et al.  Nucleation of Pd dimers at defect sites of the MgO(100) surface. , 2004, Physical review letters.

[176]  Georg Kresse,et al.  Structure of the Ultrathin Aluminum Oxide Film on NiAl(110) , 2005, Science.

[177]  L. Giordano,et al.  Adsorption of Au and Pd Atoms on Thin SiO2 Films: the Role of Atomic Structure , 2008 .

[178]  F. Sedona,et al.  Structure of a TiOx zigzag-like monolayer on Pt(111) , 2007 .

[179]  H. Freund,et al.  Katalytische Aktivität und Vergiftung spezifischer aktiver Zentren von Metall-Nanopartikeln auf Trägern† , 2002 .

[180]  L. Giordano,et al.  The structure of a stoichiometric TiO2 nanophase on Pt(111) , 2007 .

[181]  H. Freund,et al.  Ferryl (Fe=O) termination of the hematite α-Fe2O3(0001) surface , 2005 .

[182]  T. Akita,et al.  Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation , 2001 .

[183]  H. Freund,et al.  Vanadium oxide surfaces and supported vanadium oxide nanoparticles , 2006 .

[184]  Claus H. Christensen,et al.  Catalytic activity of Au nanoparticles , 2007 .

[185]  M. Sierka,et al.  Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra. , 2005, Physical review letters.

[186]  T. Risse,et al.  Binding of single gold atoms on thin MgO(001) films. , 2006, Physical review letters.

[187]  Jascha Repp,et al.  Controlling the Charge State of Individual Gold Adatoms , 2004, Science.

[188]  H. Freund,et al.  Growth of stoichiometric subnanometer silica films , 2008 .

[189]  S. Shaikhutdinov,et al.  a combined STM and LEED study of FeO(111) on Pt(100). , 2000 .

[190]  M. Bäumer,et al.  Adsorption on a polar oxide surface: O2, C2H4 and Na on Cr2O3(0001)/Cr(110) , 1996 .

[191]  P. Luches,et al.  Scanning tunnelling microscopy of MgO ultrathin films on Ag(001) , 2002 .

[192]  D. Goodman,et al.  New approach to the preparation of ultrathin silicon dioxide films at low temperatures , 1992 .

[193]  D. Goodman,et al.  Acid/base properties of MgO studied by high resolution electron energy loss spectroscopy , 1992 .

[194]  M. Sierka,et al.  On the geometrical and electronic structure of an ultra-thin crystalline silica film grown on Mo( 112) , 2007 .

[195]  P. A. Brühwiler,et al.  Electron spectroscopy studies of small deposited metal particles , 1995 .

[196]  Hans-Joachim Freund,et al.  Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations , 1997 .

[197]  M. Tanemura,et al.  OXYGEN ADSORPTION AND OXIDE FORMATION ON NI3AL(111) , 1998 .

[198]  H. Freund,et al.  CO on NiO(100): orientation and bonding , 1995 .