Applications of the Generic Programming Paradigm in the Design of CGAL

We report on the use of the generic programming paradigm in the computational geometry algorithms library cgal. The parameterization of the geometric algorithms in cgal enhances flexibility and adaptability and opens an easy way for abolishing precision and robustness problems by exact but nevertheless efficient computation. Furthermore we discuss circulators, which are an extension of the iterator concept to circular structures. Such structures arise frequently in geometric computing.

[1]  Kurt Mehlhorn,et al.  Multi-dimensional searching and computational geometry , 1984 .

[2]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[3]  Steven Fortune,et al.  Numerical stability of algorithms for 2D Delaunay triangulations , 1992, SCG '92.

[4]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[5]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[6]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[7]  K. Mehlhorn,et al.  The LEDA class real number , 1996 .

[8]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[9]  Jonathan Richard Shewchuk,et al.  Robust adaptive floating-point geometric predicates , 1996, SCG '96.

[10]  Christoph M. Hoffmann,et al.  The problems of accuracy and robustness in geometric computation , 1989, Computer.

[11]  David R. Musser,et al.  STL tutorial and reference guide - C++ programming with the standard template library , 1996, Addison-Wesley professional computing series.

[12]  Lutz Kettner,et al.  On the design of CGAL the computational geometry algorithms library , 1998 .

[13]  Stefan Schirra,et al.  Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.

[14]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[15]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[16]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[17]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[18]  Stefan Schirra,et al.  A Case Study on the Cost of Geometric Computing , 1999, ALENEX.

[19]  Mark H. Overmars Designing the Computational Geometry Algorithms Library CGAL , 1996, WACG.

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[22]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000, Softw. Pract. Exp..

[23]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[24]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .