Small-diffusion asymptotics for discretely sampled stochastic differential equations

The minimum-contrast estimation of drift and diffusion coefficient parameters for a multidimensional diffusion process with a small dispersion parameter e based on a Gaussian approximation to the transition density is presented when the sample path is observed at equidistant times k/n, k 0, 1, ..., n. We study asymptotic results for the minimum-contrast estimator as e goes to 0 and n goes to oc simultaneously.

[1]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[2]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[3]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[4]  N. Yoshida ASYMPTOTIC EXPANSION FOR STATISTICS RELATED TO SMALL DIFFUSIONS , 1992 .

[5]  J. Doob Stochastic processes , 1953 .

[6]  N. Yoshida Asymptotic expansion of Bayes estimators for small diffusions , 1993 .

[7]  N. Yoshida Estimation for diffusion processes from discrete observation , 1992 .

[8]  Naoto Kunitomo,et al.  Pricing Options under Stochastic Interest Rates: A New Approach , 1998 .

[9]  E. Gobet LAN property for ergodic diffusions with discrete observations , 2002 .

[10]  N. Yoshida Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe , 1992 .

[11]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[12]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[13]  Martin Jacobsen,et al.  Discretely Observed Diffusions: Classes of Estimating Functions and Small Δ‐optimality , 2001 .

[14]  Michael Sørensen,et al.  Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter , 2001 .

[15]  N. Yoshida,et al.  Expansion of Perturbed Random Variables Based on Generalized Wiener Functionals , 1996 .

[16]  Akihiko Takahashi An Asymptotic Expansion Approach to Pricing Financial Contingent Claims , 1999 .

[17]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[18]  Mathieu Kessler,et al.  Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process , 2000 .

[19]  Expansion of distribution of maximum likelihood estimate for misspecified diffusion type observation , 1995 .

[20]  Y. Kutoyants,et al.  Parameter estimation for stochastic processes , 1984 .

[21]  C. Laredo,et al.  A Sufficient Condition for Asymptotic Sufficiency of Incomplete Observations of a Diffusion Process , 1990 .

[22]  N. Yoshida Asymptotic Expansions for Perturbed Systems on Wiener Space , 1996 .

[23]  Masayuki Uchida,et al.  Information Criteria for Small Diffusions via the Theory of Malliavin–Watanabe , 2004 .

[24]  Asymptotic behavior of M-estimator and related random field for diffusion process , 1990 .

[25]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[26]  Masayuki Uchida,et al.  Asymptotic Expansion for Small Diffusions Applied to Option Pricing , 2004 .

[27]  D. Florens-zmirou Approximate discrete-time schemes for statistics of diffusion processes , 1989 .

[28]  H. Sørensen Discretely Observed Diffusions: Approximation of the Continuous‐time Score Function , 2001 .

[29]  N. Yoshida Conditional expansions and their applications , 2003 .

[30]  Akihiko Takahashi,et al.  The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims , 2001 .

[31]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[32]  Michael Sørensen,et al.  Estimating Functions for Discretely Observed Diffusions: A Review , 1997 .

[33]  Valentine Genon-Catalot,et al.  Maximnm contrast estimation for diffusion processes from discrete observations , 1990 .

[34]  Yury A. Kutoyants,et al.  Identification of Dynamical Systems with Small Noise , 1994 .

[35]  Robert Azencott,et al.  Formule de Taylor stochastique et developpement asymptotique d’integrales de Feynmann , 1982 .

[36]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .

[37]  E. Gobet Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach , 2001 .