Aerosol retrieval with satellite image and correlation analyses between aerosol distribution and urban underlaying surface

Human activity is one of the most important aerosol sources. Because the underlaying surface feature records most human activities, it is important to recognize the correlation between aerosol distribution and the underlaying surface. In this research, the dark object algorithm and a second-generation operational algorithm of Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol retrieval are used to estimate aerosol optical depth from Enhanced Thematic Mapper Plus (ETM+) images acquired by the Landsat 7 satellite system in urban regions, and the correlations between aerosol distribution and urban underlaying surface features (including landform, land cover and urbanization level) is analysed. Results show that (1) it is feasible to apply a second-generation algorithm to retrieve aerosol optical depth with ETM+ images. When a validation is performed with the ground observation meteorological range converted into aerosol optical depth with the correlation model acquired by a Moderate-Resolution Atmospheric Transmission (MODTRAN) simulation, the retrieval error is about 0.0094. For higher spatial resolution of an ETM+ image, it is better to study the aerosol distribution features in the urban regions. Additionally, (2) there are obvious variations in spatial distribution of aerosol over the different features of the underlaying surface. For the landform, aerosol optical depth is mountain < hill < plain; for the land cover, aerosol optical depth is dense vegetation < sparse vegetation < water < bare soil < residential area; for the different urbanization-level regions, there is bigger and bigger aerosol optical depth with increasing of the urbanization level. On the whole, as human activities increase, so too does the aerosol optical depth.

[1]  Brent N. Holben,et al.  Seasonal variability of the aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin , 2005 .

[2]  Rajan K. Chakrabarty,et al.  Aerosol light absorption and its measurement: A review , 2009 .

[3]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[4]  Thomas Popp,et al.  Correcting atmospheric masking to retrieve the spectral albedo of land surfaces from satellite measurements , 1995 .

[5]  L. Elterman,et al.  Relationships between vertical attenuation and surface meteorological range. , 1970, Applied optics.

[6]  J. Townshend,et al.  An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land , 1997 .

[7]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[8]  K. Kondratyev,et al.  Volcanic eruptions and global ozone dynamics , 1995 .

[9]  Costas A. Varotsos,et al.  Tropospheric aerosol forcing of climate: a case study for the greater area of Greece , 2008 .

[10]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[11]  Hongliang Fang,et al.  Improved estimation of aerosol optical depth from MODIS imagery over land surfaces , 2006 .

[12]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[13]  K. Voss,et al.  Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds , 1996, Nature.

[14]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[15]  Teruyuki Nakajima,et al.  AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, summer 1991 , 1997 .

[16]  Arthur P Cracknell,et al.  The IPCC Fourth Assessment Report and the fiftieth anniversary of Sputnik. , 2007, Environmental science and pollution research international.

[17]  F. Volz,et al.  Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung , 1959 .

[18]  F. Bréon,et al.  Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements , 1997 .

[19]  S. Pratsinis,et al.  Gas phase production of particles in reactive turbulent flows , 1991 .

[20]  Yoram J. Kaufman,et al.  Relationship between surface reflectance in the visible and mid‐IR used in MODIS aerosol algorithm ‐ theory , 2002 .

[21]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[22]  Costas A. Varotsos,et al.  Aircraft observations of the solar ultraviolet irradiance throughout the troposphere , 2001 .

[23]  Alexander Ignatov,et al.  Sensitivity study of the Ångström exponent derived from AVHRR over the oceans , 1998 .

[24]  D. Oesch,et al.  Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS , 2005 .

[25]  H. Gordon,et al.  Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects. , 1987, Applied optics.

[26]  Sasithorn Aranuvachapun,et al.  Variation of atmospheric optical depth for remote sensing radiance calculations , 1983 .

[27]  Y. Kaufman,et al.  Dynamic aerosol model: Urban/industrial aerosol , 1998 .

[28]  E. Schanda,et al.  Physical Fundamentals of Remote Sensing , 1986 .

[29]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[30]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[31]  Lorraine A. Remer,et al.  Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals , 2004 .

[32]  Alexander Smirnov,et al.  A Study of Global Aerosol Optical Climatology with Two-Channel AVHRR Remote Sensing , 2000 .

[33]  P. Hou,et al.  Effect of urban thermal characteristics on wetlands based on remote sensing and GIS , 2009, 2009 Joint Urban Remote Sensing Event.

[34]  O. Edenhofer,et al.  Intergovernmental Panel on Climate Change (IPCC) , 2013 .

[35]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[36]  M. M. Spencer,et al.  Atmospheric model for correction of spacecraft data. , 1973 .

[37]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[38]  Didier Tanré,et al.  Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data , 1988 .

[39]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[40]  Jianjun Liu,et al.  Ground-based remote sensing of aerosol optical properties in one city in Northwest China , 2008 .

[41]  Christine A. O'Neill,et al.  Effects of Aerosol from Biomass Burning on the Global Radiation Budget , 1992, Science.

[42]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[43]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[44]  Z. D. Adeyewa,et al.  Wavelength dependence of aerosol optical depth and the fit of the Ångström law , 2003 .

[45]  LI Xiao-wen Analysis and Application for the Empirical Relative between Aerosol Optical Depth and Horizontal Meteorological Range , 2003 .

[46]  Joseph M. Prospero,et al.  Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds , 1986, Nature.

[47]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[48]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[49]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Dimitris G. Kaskaoutis,et al.  Comparison between experimental data and modeling estimates of aerosol optical depth over Athens, Greece , 2006 .

[51]  R. Saunders The determination of broad band surface albedo from AVHRR visible and near-infrared radiances , 1990 .

[52]  Brent N. Holben,et al.  Variability of aerosol parameters over Kanpur, northern India , 2004 .

[53]  H. Kambezidis,et al.  Checking the validity of the Ångström's formula with spectral data of direct-beam irradiance obtained in Athens, Greece , 2006 .

[54]  Lorraine Remer,et al.  Angular and seasonal variation of spectral surface reflectance ratios: implications for the remote sensing of aerosol over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[55]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[56]  M. Andreae Chapter 10 – Climatic effects of changing atmospheric aerosol levels , 1995 .

[57]  Dimitris G. Kaskaoutis,et al.  On the characterization of aerosols using the Ångström exponent in the Athens area , 2006 .

[58]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[59]  Yoram J. Kaufman,et al.  Detection of dust over deserts using satellite data in the solar wavelengths , 2000, IEEE Trans. Geosci. Remote. Sens..

[60]  Martin Ferm,et al.  Deposition measurement of particulate matter in connection with corrosion studies , 2006, Analytical and bioanalytical chemistry.