Asymptotics and the theory of inference

Asymptotic analysis has always been very useful for deriving distributions in statistics in cases where the exact distribution is unavailable. More importantly, asymptotic analysis can also provide insight into the inference process itself, suggesting what information is available and how this information may be extracted. The development of likelihood inference over the past twenty-some years provides an illustration of the interplay between techniques of approximation and statistical theory.

[1]  Nicola Sartori,et al.  Modified profile likelihoods in models with stratum nuisance parameters , 2003 .

[2]  Alessandra Rosalba Brazzale,et al.  Higher Order Asymptotics Unleashed: Software Design for Nonlinear Heteroscedastic Regression , 2003 .

[3]  R. Bellio Likelihood Methods for Controlled Calibration , 2003 .

[4]  N. Reid,et al.  Some aspects of matching priors , 2003 .

[5]  Aparna V Huzurbazar,et al.  Analysis of censored and incomplete survival data using flowgraph models , 2002, Statistics in medicine.

[6]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[7]  G. Yi,et al.  Implementation of higher-order asymptotics to S-plus , 2002 .

[8]  A. Guolo Second-Order Likelihood-Based Inference in Mixed-Effects Models. , 2002 .

[9]  Guoyong Jiang,et al.  Likelihood Analysis for the Ratio of Means of Two Independent Log‐Normal Distributions , 2002, Biometrics.

[10]  A. Wong,et al.  Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models , 2002 .

[11]  Nancy Reid,et al.  Strong matching of frequentist and Bayesian parametric inference , 2002 .

[12]  Trevor J. Sweeting,et al.  Coverage probability bias, objective Bayes and the likelihood principle , 2001 .

[13]  Approximate Inference for the Factor Loading of a Simple Factor Analysis Model , 2001 .

[14]  I. Skovgaard Likelihood Asymptotics , 2001 .

[15]  T. Severini Likelihood Methods in Statistics , 2001 .

[16]  Applications of Likelihood Asymptotics for Nonlinear Regression in Herbicide Bioassays , 2000, Biometrics.

[17]  Ronald W. Butler,et al.  Reliabilities for feedback systems and their saddlepoint approximation , 2000 .

[18]  Aparna V. Huzurbazar,et al.  Modeling and Analysis of Engineering Systems Data Using Flowgraph Models , 2000, Technometrics.

[19]  F. Götze,et al.  An Edgeworth expansion for finite-population U-statistics , 2000 .

[20]  Susan A. Murphy,et al.  Rejoinder to discussion of ``On Profile Likelihood''. , 2000 .

[21]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[22]  Jianrong Wu,et al.  Practical Small-Sample Asymptotics for Distributions Used in Life-Data Analysis , 2000, Technometrics.

[23]  J. Robins,et al.  Likelihood-based inference with singular information matrix , 2000 .

[24]  Dawn Peters,et al.  Applying skovgaard's modified directed likelihood statistic to mixed linear models , 2000 .

[25]  A. Brazzale Practical small-sample parametric inference , 2000 .

[26]  L. Wasserman,et al.  Asymptotic inference for mixture models by using data‐dependent priors , 2000 .

[27]  Donald Fraser,et al.  Regression analysis, nonlinear or nonnormal simple and accurate p values from likelihood analysis , 1999 .

[28]  Luigi Pace,et al.  The directed modified profile likelihood in models with many nuisance parameters , 1999 .

[29]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[30]  Thomas A. Severini,et al.  An empirical adjustment to the likelihood ratio statistic , 1999 .

[31]  Per A. Mykland,et al.  Bartlett identities and large deviations in likelihood theory , 1999 .

[32]  Nancy Reid,et al.  A simple general formula for tail probabilities for frequentist and Bayesian inference , 1999 .

[33]  Alessandra Rosalba Brazzale,et al.  Approximate Conditional Inference in Logistic and Loglinear Models , 1999 .

[34]  On large deviations and choice of ancillary for p* and r* , 1998 .

[35]  Likelihood centered asymptotic model exponential and location model versions , 1998 .

[36]  Friedrich Götze,et al.  An Edgeworth expansion for symmetric statistics , 1997 .

[37]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[38]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[39]  I. Skovgaard,et al.  An explicit large-deviation approximation to one-parameter tests , 1996 .

[40]  Nancy Reid,et al.  Likelihood and higher‐order approximations to tail areas: A review and annotated bibliography , 1996 .

[41]  John S. J. Hsu Generalized Laplacian approximations in Bayesian inference , 1995 .

[42]  P. Mykland Martingale expansions and second order inference , 1995 .

[43]  Trevor J. Sweeting,et al.  A framework for Bayesian and likelihood approximations in statistics , 1995 .

[44]  Nancy Reid,et al.  Ancillaries and Third Order Significance , 1995 .

[45]  S. R. Chamberlin,et al.  Stable and invariant adjusted directed likelihoods , 1994 .

[46]  Donald A. Pierce,et al.  Higher-order asymptotics and the likelihood principle: One-parameter models , 1994 .

[47]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[48]  John E. Kolassa,et al.  Approximate Conditional Inference in Exponential Families via the Gibbs Sampler , 1994 .

[49]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[50]  Thomas J. DiCiccio,et al.  Simple Modifications for Signed Roots of Likelihood Ratio Statistics , 1993 .

[51]  J. Booth,et al.  Saddlepoint Approximations for Tests of Block Independence, Sphericity and Equal Variances and Covariances , 1993 .

[52]  Suojin Wang Saddlepoint approximations in conditional inference , 1993, Journal of Applied Probability.

[53]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[54]  B. Efron Bayes and likelihood calculations from confidence intervals , 1993 .

[55]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[56]  Anna Nicolaou Bayesian intervals with good frequency behaviour in the presence of nuisance parameters , 1993 .

[57]  J. Booth,et al.  Saddlepoint approximations for the Bartlett-Nanda-Pillai trace statistic in multivariate analysis , 1992 .

[58]  J. L. Jensen The modified signed likelihood statistic and saddlepoint approximations , 1992 .

[59]  Donald A. Pierce,et al.  Practical Use of Higher Order Asymptotics for Multiparameter Exponential Families , 1992 .

[60]  B. Efron,et al.  More accurate confidence intervals in exponential families , 1992 .

[61]  R. Butler,et al.  Saddlepoint approximations for the generalized variance and Wilks statistic , 1992 .

[62]  O. Barndorff-Nielsen Modified signed log likelihood ratio , 1991 .

[63]  A. Dawid Fisherian Inference in Likelihood and Prequential Frames of Reference , 1991 .

[64]  Donald Fraser,et al.  Statistical Inference: Likelihood to Significance , 1991 .

[65]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[66]  An ancillary invariant modification of the signed log likelihood ratio , 1991 .

[67]  Ole E. Barndorff-Nielsen,et al.  Approximate Interval Probabilities , 1990 .

[68]  Ib M. Skovgaard,et al.  On the Density of Minimum Contrast Estimators , 1990 .

[69]  D. Fraser Tail probabilities from observed likelihoods , 1990 .

[70]  Thomas J. DiCiccio,et al.  Approximations of marginal tail probabilities and inference for scalar parameters , 1990 .

[71]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[72]  Donald Fraser,et al.  Normed likelihood as saddlepoint approximation , 1988 .

[73]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[74]  Nancy Reid,et al.  Saddlepoint Methods and Statistical Inference , 1988 .

[75]  Asymptotic Normality and Large Deviations , 1988 .

[76]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[77]  O. E. Barndorff-Nielsen,et al.  Infereni on full or partial parameters based on the standardized signed log likelihood ratio , 1986 .

[78]  D. Cox,et al.  The role of differential geometry in statistical theory , 1986 .

[79]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[80]  J. Pfanzagl,et al.  Asymptotic Expansions for General Statistical Models , 1985 .

[81]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[82]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[83]  S. Portnoy Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .

[84]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[85]  Donald Fraser,et al.  Further remarks on asymptotic normality of likelihood and conditional analyses , 1984 .

[86]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[87]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[88]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[89]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[90]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[91]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[92]  S. Rice,et al.  Saddle point approximation for the distribution of the sum of independent random variables , 1980, Advances in Applied Probability.

[93]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[94]  S. Stigler Studies in the History of Probability and Statistics. XXXII Laplace, Fisher, and the discovery of the concept of sufficiency , 1973 .

[95]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[96]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[97]  A. M. Walker On the Asymptotic Behaviour of Posterior Distributions , 1969 .

[98]  D. Fraser,et al.  The Structure of Inference. , 1969 .

[99]  H. W. Peers On Confidence Points and Bayesian Probability Points in the Case of Several Parameters , 1965 .

[100]  G. Box An analysis of transformations (with discussion) , 1964 .

[101]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[102]  M. Kendall Studies in the History of Probability and Statistics. XII. The Book of Fate , 1961 .

[103]  M. Kendall Theoretical Statistics , 1956, Nature.

[104]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[105]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[106]  R. Fisher Two New Properties of Mathematical Likelihood , 1934 .

[107]  R. Fisher A mathematical Examination of the Methods of determining the Accuracy of Observation by the Mean Error, and by the Mean Square Error , 1920 .