A Comprehensive Study of the Resistive Switching Mechanism in $\hbox{Al/TiO}_{x}/\hbox{TiO}_{2}/\hbox{Al}$-Structured RRAM

The conduction mechanism and resistive switching properties in a resistive-random-access-memory device composed of Al(top)/TiOx/TiO2/Al( bottom) are investigated in this paper. The active-top-electrode (TE) material aluminum interacted with the TiO2 layer and induced an oxygen-deficient TiOx layer near the TE. The naturally formed oxygen-deficient TiOx layer was confirmed by a transmission-electron-microscope energy-dispersive X-ray spectrometry analysis. The oxygen-deficient TiOx region acted as a trap for electrons and contributed to the resistive switching. The proposed mechanism and measured data are verified through simulation of a two-variable resistor model.

[1]  D. Stewart,et al.  The missing memristor found , 2009, Nature.

[2]  Dashan Shang,et al.  Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes , 2009 .

[3]  J. Massies,et al.  The critical role of growth temperature on the structural and electrical properties of AlGaN/GaN high electron mobility transistor heterostructures grown on Si(111) , 2009 .

[4]  M. Gomi,et al.  Enhancement of Switching Capability on Bipolar Resistance Switching Device with Ta/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[5]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[6]  H. Hwang,et al.  Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures , 2008 .

[7]  M. Gomi,et al.  Origin of Negative Differential Resistance Observed on Bipolar Resistance Switching Device with Ti/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[8]  Sungho Kim,et al.  Structure Effects on Resistive Switching of $ \hbox{Al/TiO}_{x}/\hbox{Al}$ Devices for RRAM Applications , 2008, IEEE Electron Device Letters.

[9]  C. Hwang,et al.  First-principles study of point defects in rutileTiO2−x , 2006 .

[10]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[11]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[12]  Hideaki Adachi,et al.  Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature , 2004 .

[13]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3 , 2004, cond-mat/0411474.

[14]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[15]  Rainer Waser,et al.  Resistive switching in metal–ferroelectric–metal junctions , 2003 .

[16]  K. Hong,et al.  Photocatalysis and hydrophilicity of doped TiO2 thin films. , 2003, Journal of colloid and interface science.

[17]  U. Gesenhues Al-doped TiO2 pigments: influence of doping on the photocatalytic degradation of alkyd resins , 2001 .

[18]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[19]  P. Boolchand,et al.  Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses , 1999 .

[20]  U. Gesenhues,et al.  Crystal growth and defect structure of Al3+-doped rutile , 1999 .

[21]  H. Tuller,et al.  Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide , 1999 .