International Myeloma Working Group molecular classification of multiple myeloma: spotlight review

[1]  Cheng Li,et al.  Prognostic significance of copy-number alterations in multiple myeloma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  F. Zhan,et al.  An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. , 2008, Blood.

[3]  C. Croce,et al.  MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis , 2008, Proceedings of the National Academy of Sciences.

[4]  R. Fonseca,et al.  Clinical and biological significance of RAS mutations in multiple myeloma , 2008, Leukemia.

[5]  B. Barlogie,et al.  Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. , 2009, Blood.

[6]  P. L. Bergsagel,et al.  Erratum: Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature (Leukemia (2007) 10.1038/sj.leu.2404934) , 2008 .

[7]  B. Barlogie,et al.  Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. , 2008, Blood.

[8]  P. L. Bergsagel,et al.  Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature , 2008, Leukemia.

[9]  P. L. Bergsagel,et al.  Genetic aberrations and survival in plasma cell leukemia , 2008, Leukemia.

[10]  P. L. Bergsagel,et al.  Genetic events in the pathogenesis of multiple myeloma. , 2007, Best practice & research. Clinical haematology.

[11]  G. Morgan,et al.  Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. , 2007, Blood.

[12]  X. Leleu,et al.  Hyperdiploidy Is a Common Finding in Monoclonal Gammopathy of Undetermined Significance and Monosomy 13 Is Restricted to These Hyperdiploid Patients , 2007, Clinical Cancer Research.

[13]  F. Zhan,et al.  Establishment and exploitation of hyperdiploid and non‐hyperdiploid human myeloma cell lines , 2007, British journal of haematology.

[14]  Jörg Hackermüller,et al.  Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. , 2007, Blood.

[15]  L. Staudt,et al.  Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. , 2007, Cancer cell.

[16]  L. Bruhn,et al.  Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. , 2007, Cancer cell.

[17]  R. Bataille,et al.  Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. , 2007, Blood.

[18]  Rafael Fonseca,et al.  Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. , 2007, Cancer research.

[19]  C. James,et al.  Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. , 2007, Blood.

[20]  Yongsheng Huang,et al.  A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. , 2006, Blood.

[21]  G. Ahmann,et al.  Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma , 2006, Leukemia.

[22]  D. Esseltine,et al.  Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. , 2006, Blood.

[23]  John Crowley,et al.  The molecular classification of multiple myeloma. , 2006, Blood.

[24]  Irene Ghobrial,et al.  6q deletion discriminates Waldenström macroglobulinemia from IgM monoclonal gammopathy of undetermined significance. , 2006, Cancer genetics and cytogenetics.

[25]  Cheng Li,et al.  Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. , 2006, Blood.

[26]  Yongsheng Huang,et al.  Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. , 2006, Blood.

[27]  G. Morgan,et al.  Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma , 2006, Leukemia.

[28]  G. Ahmann,et al.  Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations , 2006, Leukemia.

[29]  G. Ahmann,et al.  Clinical implication of centrosome amplification in plasma cell neoplasm. , 2006, Blood.

[30]  L. Chin,et al.  High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. , 2006, Cancer cell.

[31]  G. Ahmann,et al.  Ploidy status rarely changes in myeloma patients at disease progression. , 2006, Leukemia research.

[32]  T. Therneau,et al.  Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. , 2005, Blood.

[33]  S. Trudel,et al.  Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation , 2005, Bone Marrow Transplantation.

[34]  G. Ahmann,et al.  Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. , 2005, Blood.

[35]  G. Ahmann,et al.  A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. , 2005, Blood.

[36]  Bart Barlogie,et al.  Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. , 2005, Blood.

[37]  Hong Chang,et al.  CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. , 2004, Blood.

[38]  Hong Chang,et al.  Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions , 2004, British journal of haematology.

[39]  R. Kyle,et al.  Drug therapy: Multiple myeloma , 2004 .

[40]  D. Reece,et al.  p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. , 2004, Blood.

[41]  P. L. Bergsagel,et al.  Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. , 2004, Blood.

[42]  D. Reece,et al.  The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant , 2004, British journal of haematology.

[43]  R. Fonseca,et al.  The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. , 2003, Blood.

[44]  P. Moreau,et al.  t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma , 2003, Leukemia.

[45]  R. Fonseca Many and multiple myeloma(s) , 2003, Leukemia.

[46]  M. Rue,et al.  Clinical and biologic implications of recurrent genomic aberrations in myeloma. , 2003, Blood.

[47]  R. Bataille,et al.  Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. , 2003, Blood.

[48]  Tony Reiman,et al.  In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. , 2003, Blood.

[49]  R. Fonseca,et al.  Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma , 2003, Leukemia.

[50]  Marcos González,et al.  Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival , 2002, British journal of haematology.

[51]  G. Ahmann,et al.  Genomic abnormalities in monoclonal gammopathy of undetermined significance. , 2002, Blood.

[52]  Wenming Chen,et al.  Methylation of p16 and p15 genes in multiple myeloma. , 2002, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih.

[53]  R. Fonseca,et al.  Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. , 2002, Blood.

[54]  G. Gerrard,et al.  Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis , 2002, British journal of haematology.

[55]  R. Bataille,et al.  Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. , 2002, Blood.

[56]  P. L. Bergsagel,et al.  Multiple myeloma: evolving genetic events and host interactions , 2002, Nature Reviews Cancer.

[57]  D. Harrington,et al.  Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. , 2002, Cancer research.

[58]  G. Ahmann,et al.  Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. , 2001, Blood.

[59]  D Puthier,et al.  High incidence of N and K‐Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis , 2001, Human mutation.

[60]  R. Fonseca,et al.  The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. , 2001, Blood.

[61]  B. Barlogie,et al.  Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma , 2001, British journal of haematology.

[62]  H. Avet-Loiseau,et al.  Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. , 2000 .

[63]  R. Fonseca,et al.  The (11;14)(q13;q32) translocation in multiple myeloma. A morphologic and immunohistochemical study. , 2000, American journal of clinical pathology.

[64]  H. Kaufmann,et al.  Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. , 2000, Blood.

[65]  R. Bataille,et al.  Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myélome. , 1999, Blood.

[66]  R. Bataille,et al.  14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myélome. , 1999, Cancer research.

[67]  M. Fiegl,et al.  Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. , 1998, Blood.

[68]  H. Koeffler,et al.  Methylation of the p16INK4A gene in multiple myeloma , 1998, British journal of haematology.

[69]  C. Bastard,et al.  Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases , 1998, Leukemia.

[70]  J. Miguel,et al.  Prognostic value of numerical chromosome aberrations in multiple myeloma: A FISH analysis of 15 different chromosomes. , 1998, Blood.

[71]  B. Barlogie,et al.  Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. , 1998, Blood.

[72]  G. Ahmann,et al.  A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. , 1998, Cancer genetics and cytogenetics.

[73]  J. Decaprio,et al.  Characterization of p16(INK4A) expression in multiple myeloma and plasma cell leukemia. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[74]  E. Schröck,et al.  Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3 , 1997, Nature Genetics.

[75]  B. Barlogie,et al.  Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[76]  B. Ness,et al.  Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. , 1996, Blood.

[77]  B. Barlogie,et al.  Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. , 1995, Blood.

[78]  M. Gordon Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma , 2009 .

[79]  J. San Miguel,et al.  Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma , 2008, Leukemia.

[80]  L. Escoda,et al.  Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis , 2007, Leukemia.

[81]  P. Sonneveld,et al.  Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials , 2007, Leukemia.

[82]  Marcos González,et al.  The association of increased p14ARF/p16INK4a and p15INK4a gene expression with proliferative activity and the clinical course of multiple myeloma. , 2006, Haematologica.

[83]  H. Johnsen,et al.  Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. , 2005, Blood.

[84]  Medicina Nei Secoli La Redazione No Abstract Available , 2005 .

[85]  H. Kaufmann,et al.  Oncogenesis of Multiple Myeloma , 2004 .

[86]  B. Quesnel,et al.  Different prognostic values of p15(INK4b) and p16(INK4a) gene methylations in multiple myeloma. , 2003, Haematologica.

[87]  R. Fonseca,et al.  Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy , 2001, Leukemia.

[88]  T. Kinoshita,et al.  Hypermethylation of p16INK4A gene promoter during the progression of plasma cell dyscrasia , 2001, Leukemia.

[89]  P. L. Bergsagel,et al.  The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. , 1998, Blood.