Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation

Numerical uncertainty is an important but sensitive subject in computational fluid dynamics and there is a need for improved methods to quantify calculation accuracy. A known analytical solution, a Lamb-type vortex unsteady movement in a free stream, is compared to the numerical solutions obtained from different numerical schemes to assess their temporal accuracies. Solving the Navier-Stokes equations and using the standard Linearized Block Implicit ADI scheme, with first order accuracy in time second order in space, a vortex is convected and results show the rapid diffusion of the vortex. These calculations were repeated with the iterative implicit ADI scheme which has second-order time accuracy. A considerable improvement was noticed. The results of a similar calculation using an iterative fifth-order spatial upwind-biased scheme is also considered. The findings of the present paper demonstrate the needs and provide a means for quantification of both distribution and absolute values of numerical error.