Patterning and applications of nanoporous structures in organic electronics

Abstract Organic electronic devices have received intensive interests from both academia and industry due to their potential for low-cost, large-area, and solution-processed alternative to conventional inorganic devices. The integration of nanoporous structures into organic electronics endows devices with unique capabilities for enhanced performance and promising capacity for various applications. Recent advances in patterning and applications of nanoporous structures have greatly promoted the progress of organic electronics. This review summaries the current research activities on the fabrication methodologies of nanoporous structures and their achievements in organic electronic devices. Finally, an outlook of future research directions and challenges in this area is presented.

[1]  Nobuyoshi Baba,et al.  Fabrication of a one‐dimensional microhole array by anodic oxidation of aluminum , 1993 .

[2]  A. Brolo,et al.  Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions. , 2015, Applied optics.

[3]  N. Tessler,et al.  Reaching saturation in patterned source vertical organic field effect transistors , 2017 .

[4]  X. Liu,et al.  Organic Light‐Emitting Field‐Effect Transistors: Device Geometries and Fabrication Techniques , 2018, Advanced materials.

[5]  Richard Martel,et al.  Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography , 2002 .

[6]  Lauren M. Otto,et al.  Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays , 2014, Nano letters.

[7]  Conor F. Madigan,et al.  Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification , 2000 .

[8]  K. Yager,et al.  In Situ Study of ABC Triblock Terpolymer Self-Assembly under Solvent Vapor Annealing , 2019, Macromolecules.

[9]  Huanli Dong,et al.  Halogenated Tetraazapentacenes with Electron Mobility as High as 27.8 cm2 V−1 s−1 in Solution‐Processed n‐Channel Organic Thin‐Film Transistors , 2018, Advanced materials.

[10]  Xingyi Huang,et al.  Polymer-Based Gate Dielectrics for Organic Field-Effect Transistors , 2019, Chemistry of Materials.

[11]  Wenping Hu,et al.  Organic Semiconductor Single Crystals for Electronics and Photonics , 2018, Advanced materials.

[12]  Lifeng Chi,et al.  High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. , 2018, Chemical reviews.

[13]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[14]  Qing Liao,et al.  Construction and optoelectronic properties of organic one-dimensional nanostructures. , 2010, Accounts of chemical research.

[15]  Hung-Cheng Lin,et al.  Review of a solution-processed vertical organic transistor as a solid-state vacuum tube , 2015 .

[16]  Yingli Chu,et al.  Porous Organic Field‐Effect Transistors for Enhanced Chemical Sensing Performances , 2017 .

[17]  S. Kim,et al.  Selective Electron‐ or Hole‐Transport Enhancement in Bulk‐Heterojunction Organic Solar Cells with N‐ or B‐Doped Carbon Nanotubes , 2011, Advanced materials.

[18]  Zhi‐Kang Xu,et al.  Bioinspired Block Copolymer for Mineralized Nanoporous Membrane. , 2018, ACS nano.

[19]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[20]  Ying Diao,et al.  Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors , 2017, Advanced materials.

[21]  Hanqiong Hu,et al.  Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. , 2014, Soft matter.

[22]  Gui Yu,et al.  “Regioselective Deposition” Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All‐Solution‐Processed, High‐Performance, Bottom‐Contacted, Flexible, Polymer‐Based Electronics , 2014 .

[23]  Yi Cui,et al.  Large-Area Nanosphere Self-Assembly by a Micro-Propulsive Injection Method for High Throughput Periodic Surface Nanotexturing. , 2015, Nano letters.

[24]  Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. , 2011, Optics letters.

[25]  Alexandre G. Brolo,et al.  Large‐Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonic‐Enhanced Photovoltaics , 2010 .

[26]  H. Fuchs,et al.  Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits , 2019, Advanced materials.

[27]  S. Zhang,et al.  Gas Sensors Based on Nano/Microstructured Organic Field-Effect Transistors. , 2019, Small.

[28]  Jiang Liu,et al.  Electrolyte-Gated Vertical Organic Transistor and Circuit , 2018, The Journal of Physical Chemistry C.

[29]  C. Chung,et al.  Evaluations of heat treatment on polymer adhesive bonding and thermal-induced failure of two-layer through-silicon via structures , 2019, Sensors and Actuators A: Physical.

[30]  K. Kudo,et al.  High‐Performance, Vertical‐Type Organic Transistors with Built‐In Nanotriode Arrays , 2007 .

[31]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[32]  Hyungsoon Im,et al.  Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors , 2007 .

[33]  T. Ebbesen,et al.  A nanomesh scaffold for supramolecular nanowire optoelectronic devices. , 2016, Nature Nanotechnology.

[34]  W. Cai,et al.  Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals† , 2008 .

[35]  J. Tour,et al.  Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. , 2010, Journal of the American Chemical Society.

[36]  Dong Yun Lee,et al.  Poly(3‐hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics , 2010 .

[37]  Achieving ambipolar vertical organic transistors via nanoscale interface modification , 2007 .

[38]  K. Choi,et al.  Plasmonic nanomeshes as large-area, low-resistive transparent electrodes and their application to ITO-free organic light-emitting diodes , 2014 .

[39]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[40]  F. So,et al.  Semi-transparent vertical organic light-emitting transistors , 2018 .

[41]  V. Rao,et al.  Polymer composite-based OFET sensor with improved sensitivity towards nitro based explosive vapors , 2010 .

[42]  A. Rinzler,et al.  High current, low voltage carbon nanotube enabled vertical organic field effect transistors. , 2010, Nano letters.

[43]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[44]  Liping Ma,et al.  Unique architecture and concept for high-performance organic transistors , 2004 .

[45]  J. W. Menezes,et al.  Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. , 2006, Optics express.

[46]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[48]  Ariel J. Ben-Sasson,et al.  Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode. , 2012, Nano letters.

[49]  Meihua Jin,et al.  Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors. , 2014, Small.

[50]  A. Hohenau,et al.  Probing surface plasmon fields by far‐field Raman imaging , 2008, Journal of microscopy.

[51]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[52]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[53]  Sunggook Park,et al.  Nanohole array plasmonic biosensors: Emerging point-of-care applications. , 2019, Biosensors & bioelectronics.

[54]  Joy Cheng,et al.  Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography , 2001 .

[55]  Xiaodong Chen,et al.  Nature-Inspired Structural Materials for Flexible Electronic Devices. , 2017, Chemical reviews.

[56]  Chunhui Wang,et al.  Nanoimprint lithography for the manufacturing of flexible electronics , 2019, Science China Technological Sciences.

[57]  P. Samorí,et al.  Fast‐Response Photonic Device Based on Organic‐Crystal Heterojunctions Assembled into a Vertical‐Yet‐Open Asymmetric Architecture , 2017, Advanced materials.

[58]  Kaushik Roy Choudhury,et al.  PbSe nanocrystal-based infrared-to-visible up-conversion device. , 2011, Nano letters.

[59]  Fei Wang,et al.  Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. , 2010, Optics letters.

[60]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[61]  Rafael Silva,et al.  Water Droplet Self-Assembly to Au Nanoporous Films with Special Light Trapping and Surface Electromagnetic Field Enhancement. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[62]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[63]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[64]  Yucheng Ding,et al.  Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates. , 2016, ACS nano.

[65]  Z. Yin,et al.  Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template , 2012, Advanced materials.

[66]  P. Nealey,et al.  Directed Self-Assembly of Polystyrene-b-poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography. , 2017, Nano letters.

[67]  J. Cooper,et al.  Fabrication of double split metallic nanorings for Raman sensing , 2009 .

[68]  A. Brolo,et al.  Periodic metallic nanostructures as plasmonic chemical sensors. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[69]  Jin Kon Kim,et al.  Asymmetric Block Copolymers with Homopolymers: Routes to Multiple Length Scale Nanostructures , 2002 .

[70]  Kang L. Wang,et al.  Metallic nanomesh electrodes with controllable optical properties for organic solar cells , 2012 .

[71]  B. Cho,et al.  Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures , 2011 .

[72]  C. Peng,et al.  Fabrication of Anodic‐Alumina Films with Custom‐Designed Arrays of Nanochannels , 2005 .

[73]  Christophe Vieu,et al.  Optimization of experimental operating parameters for very high resolution focused ion beam applications , 1997 .

[74]  A. Rinzler,et al.  Carbon‐Nanotube‐Enabled Vertical Field Effect and Light‐Emitting Transistors , 2008 .

[75]  Evan P. Donoghue,et al.  Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays , 2011, Science.

[76]  Alexandru Vlad,et al.  Direct Transcription of Two‐Dimensional Colloidal Crystal Arrays into Three‐Dimensional Photonic Crystals , 2013 .

[77]  Yucheng Ding,et al.  Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting , 2011 .

[78]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[79]  Junsheng Yu,et al.  Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport. , 2017, Journal of the American Chemical Society.

[80]  R. Segalman Patterning with block copolymer thin films , 2005 .

[81]  Jaewoong Lee,et al.  High-gain infrared-to-visible upconversion light-emitting phototransistors , 2016, Nature Photonics.

[82]  Q. Pei,et al.  Morphological/nanostructural control toward intrinsically stretchable organic electronics. , 2019, Chemical Society reviews.

[83]  J. Pak,et al.  Investigation on fabrication of nanoscale patterns using laser interference lithography. , 2010, Journal of nanoscience and nanotechnology.

[84]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[85]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[86]  Nicholas A. Melosh,et al.  Creating large area molecular electronic junctions using atomic layer deposition , 2008 .

[87]  C. Adachi,et al.  Highly efficient organic light-emitting diodes from delayed fluorescence , 2012, Nature.

[88]  K. Yager,et al.  Thin Film Self-Assembly of a Silicon-Containing Rod–Coil Liquid Crystalline Block Copolymer , 2019, Macromolecules.

[89]  H. Padmore,et al.  Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode. , 2013, Physical review letters.

[90]  L. Chi,et al.  Advanced colloidal lithography: From patterning to applications , 2018, Nano Today.

[91]  M. Krishnan,et al.  Silicon-containing block copolymers for lithographic applications , 2017 .

[92]  Guozhen Shen,et al.  New insights and perspectives into biological materials for flexible electronics. , 2017, Chemical Society reviews.

[93]  Michael Greenman,et al.  The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors , 2014 .

[94]  T. Tamamura,et al.  Square and Triangular Nanohole Array Architectures in Anodic Alumina , 2001 .

[95]  Bingqing Luo,et al.  Enhanced Thermal Stability of Thermoplastic Polymer Nanostructures for Nanoimprint Lithography , 2019, Materials.

[96]  Li Wang,et al.  Decreasing the Saturated Contact Angle in Electrowetting‐on‐Dielectrics by Controlling the Charge Trapping at Liquid–Solid Interfaces , 2016 .

[97]  Yong-Hee Lee,et al.  Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure , 2004 .

[98]  Giovanni Piero Pepe,et al.  Enabling Strategies in Organic Electronics Using Ordered Block Copolymer Nanostructures , 2010, Advanced materials.

[99]  Wai Kin Chan,et al.  Recent Advances in Transition Metal Complexes and Light‐Management Engineering in Organic Optoelectronic Devices , 2014, Advanced materials.

[100]  A. Birner,et al.  Fabrication and Microstructuring of Hexagonally Ordered Two‐Dimensional Nanopore Arrays in Anodic Alumina , 1999 .

[101]  Junsheng Yu,et al.  Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor , 2016 .

[102]  J. W. Menezes,et al.  Recording different geometries of 2D hexagonal photonic crystals by choosing the phase between two-beam interference exposures. , 2006, Optics express.

[103]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[104]  Thomas H. Reilly,et al.  Surface-plasmon enhanced transparent electrodes in organic photovoltaics , 2008 .

[105]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[106]  Liqiang Li,et al.  Solution‐Processing of High‐Purity Semiconducting Single‐Walled Carbon Nanotubes for Electronics Devices , 2018, Advanced materials.

[107]  Jung Woo Lee,et al.  Hierarchical multi-level block copolymer patterns by multiple self-assembly. , 2019, Nanoscale.

[108]  Yong Wang,et al.  Perpendicular Alignment and Selective Swelling-Induced Generation of Homopores of Polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) Triblock Terpolymer , 2018, Macromolecules.

[109]  Alp Artar,et al.  Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes , 2010 .

[110]  Hakho Lee,et al.  Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor , 2014, Nature Biotechnology.

[111]  W. Hu,et al.  Organic semiconductor crystals. , 2018, Chemical Society reviews.

[112]  Luis Martín-Moreno,et al.  Influence of material properties on extraordinary optical transmission through hole arrays , 2008 .

[113]  Craig J Hawker,et al.  Defect-free nanoporous thin films from ABC triblock copolymers. , 2006, Journal of the American Chemical Society.

[114]  Egle Puodziukynaite,et al.  Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics. , 2014, Nano letters.

[115]  W. Choy,et al.  Emerging Novel Metal Electrodes for Photovoltaic Applications. , 2018, Small.

[116]  F. So,et al.  Recent Advances in OLED Optical Design , 2019, Advanced Functional Materials.

[117]  H. Chae,et al.  Light extraction from surface plasmon polaritons and substrate/waveguide modes in organic light-emitting devices with silver-nanomesh electrodes. , 2016, Optics express.

[118]  N. Tessler,et al.  Removing the current-limit of vertical organic field effect transistors , 2017 .

[119]  Sang‐Hyun Oh,et al.  Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS , 2014, Chemistry of materials : a publication of the American Chemical Society.

[120]  Huibiao Liu,et al.  Aggregate nanostructures of organic molecular materials. , 2010, Accounts of chemical research.

[121]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[122]  F. Zhao,et al.  Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying. , 2016, Optics express.

[123]  M. Mcfarland,et al.  Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. , 2005, Journal of the American Chemical Society.

[124]  Kuan-Yu Chen,et al.  Enhanced light out-coupling of organic light-emitting diode using metallic nanomesh electrodes and microlens array. , 2013, Optics express.

[125]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[126]  M. Stingl,et al.  Hierarchical Design of Metal Micro/Nanohole Array Films Optimizes Transparency and Haze Factor , 2018 .

[127]  Min Gu,et al.  Three-dimensional femtosecond laser nanolithography of crystals , 2018, Nature Photonics.

[128]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[129]  Dong Ha Kim,et al.  Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency. , 2016, ACS nano.

[130]  D. Larson,et al.  High-throughput nanohole array based system to monitor multiple binding events in real time. , 2008, Analytical chemistry.

[131]  Jung Ho Park,et al.  Nanopatterning by laser interference lithography: applications to optical devices. , 2014, Journal of nanoscience and nanotechnology.

[132]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[133]  L. Wan,et al.  Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor , 2017 .

[134]  H. Jang,et al.  Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries , 2017 .

[135]  Olle Inganäs,et al.  Organic Photovoltaics over Three Decades , 2018, Advanced materials.

[136]  J. MacManus‐Driscoll,et al.  Large-area silica nanotubes with controllable geometry on silicon substrates , 2009 .

[137]  Wei Chen,et al.  Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells , 2016 .

[138]  Shikuan Yang,et al.  Surface patterning using templates: concept, properties and device applications. , 2011, Chemical Society reviews.

[139]  Wenping Hu,et al.  Organic field-effect transistor-based gas sensors. , 2015, Chemical Society reviews.

[140]  Hyo Seon Suh,et al.  Fabrication of Nanoporous Alumina Ultrafiltration Membrane with Tunable Pore Size Using Block Copolymer Templates , 2017 .

[141]  Nir Tessler,et al.  Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates , 2009 .

[142]  Xiangming Li,et al.  Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices , 2016, Advanced materials.

[143]  Carlos Escobedo,et al.  On-chip nanohole array based sensing: a review. , 2013, Lab on a chip.

[144]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[145]  Zhizhong Chen,et al.  Fabrication of nano-patterned sapphire substrates by combining nanoimprint lithography with edge effects , 2019, CrystEngComm.

[146]  H. Altug,et al.  An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. , 2010, Nano letters.

[147]  Liping Ma,et al.  Vertical organic light emitting transistor , 2007 .

[148]  Penglei Chen,et al.  Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. , 2016, Small.

[149]  Huaping Zhao,et al.  Energy-efficient reconfigurable AI processor , 2019, Journal of Semiconductors.

[150]  L S Tan,et al.  Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. , 2008, Optics express.

[151]  M. Schvartzman,et al.  Soft thermal nanoimprint with a 10 nm feature size. , 2019, Soft matter.

[152]  Enhanced Charge Injection Through Nanostructured Electrodes for Organic Field Effect Transistors , 2015 .

[153]  Younan Xia,et al.  Introducing organic nanowire transistors , 2008 .

[154]  N. Tessler,et al.  Complementary inverter from patterned source electrode vertical organic field effect transistors , 2016 .

[155]  Ruben Z. Waldman,et al.  Atomic layer deposition for membrane interface engineering. , 2018, Nanoscale.

[156]  Jianguo Mei,et al.  Solution‐Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers , 2017 .

[157]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[158]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[159]  Hsiao-Wen Zan,et al.  Porous Organic TFTs for the Applications on Real-Time and Sensitive Gas Sensors , 2011, IEEE Electron Device Letters.

[160]  K. Sun,et al.  Self‐Assembly of Ordered Semiconductor Nanoholes by Ion Beam Sputtering , 2009 .

[161]  Thomas P. Russell,et al.  Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses , 2006 .

[162]  Kenji Nakamura,et al.  Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate , 2006 .

[163]  C. Hawker,et al.  Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns , 2009, Advanced materials.

[164]  Zhihong Wang,et al.  Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering , 2012 .

[165]  Ariel J. Ben-Sasson,et al.  Fast switching characteristics in vertical organic field effect transistors , 2013 .

[166]  Hoang Yan Lin,et al.  Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer. , 2015, Advanced materials.

[167]  Hao Jiang,et al.  Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance , 2013, Nanotechnology.

[168]  Huanli Dong,et al.  Vertical Organic Field‐Effect Transistors , 2019, Advanced Functional Materials.

[169]  Liaoyong Wen,et al.  Multiple nanostructures based on anodized aluminium oxide templates. , 2017, Nature nanotechnology.

[170]  Wan-Yi Chang,et al.  Facile fabrication of ordered nanostructures from protruding nanoballs to recessional nanosuckers via solvent treatment on covered nanosphere assembled monolayers. , 2014, Nano letters.

[171]  Qian Li,et al.  Nano‐Imprinted Ferroelectric Polymer Nanodot Arrays for High Density Data Storage , 2013 .

[172]  Ariel J. Ben-Sasson,et al.  Solution-processed ambipolar vertical organic field effect transistor , 2012 .

[173]  Viktor Malyarchuk,et al.  High performance plasmonic crystal sensor formed by soft nanoimprint lithography. , 2005, Optics express.

[174]  Edwin L. Thomas,et al.  Nanostructured Thin Films of Organic–Organometallic Block Copolymers: One-Step Lithography with Poly(ferrocenylsilanes) by Reactive Ion Etching , 2000 .

[175]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[176]  Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[177]  Bozena Kaminska,et al.  Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. , 2011, Optics express.