Novel 2D Fingerprints for Ligand-Based Virtual Screening

This paper describes the development of a set of new 2D fingerprints for the purposes of virtual screening in a pharmaceutical environment. The new fingerprints are based on established ones: the changes in their design included the introduction of overlapping pharmacophore feature types, feature counts for pharmacophore and structural fingerprints, as well as changes in the resolution in property description for property fingerprints. The effects of each of these changes on virtual screening performance were monitored using two types of training sets, emulating different stages in the drug discovery process. The results demonstrate that these changes all lead to an improvement in virtual screening performance.

[1]  Andreas Bender,et al.  Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier , 2004, J. Chem. Inf. Model..

[2]  Darren R. Flower,et al.  On the Properties of Bit String-Based Measures of Chemical Similarity , 1998, J. Chem. Inf. Comput. Sci..

[3]  Miklos Feher,et al.  The Use of Consensus Scoring in Ligand-Based Virtual Screening , 2006, J. Chem. Inf. Model..

[4]  Jürgen Bajorath,et al.  Design and Evaluation of a Molecular Fingerprint Involving the Transformation of Property Descriptor Values into a Binary Classification Scheme , 2003, J. Chem. Inf. Comput. Sci..

[5]  Yvonne C. Martin,et al.  The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding , 1997, J. Chem. Inf. Comput. Sci..

[6]  Andreas Bender,et al.  A Discussion of Measures of Enrichment in Virtual Screening: Comparing the Information Content of Descriptors with Increasing Levels of Sophistication , 2005, J. Chem. Inf. Model..

[7]  David Weininger,et al.  Stigmata: An Algorithm To Determine Structural Commonalities in Diverse Datasets , 1996, J. Chem. Inf. Comput. Sci..

[8]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[9]  Yvonne C. Martin,et al.  Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection , 1996, J. Chem. Inf. Comput. Sci..

[10]  Richard D. Taylor,et al.  Virtual Screening Using Protein—Ligand Docking: Avoiding Artificial Enrichment. , 2004 .

[11]  P. Willett Searching techniques for databases of two- and three-dimensional chemical structures. , 2005, Journal of medicinal chemistry.

[12]  P. Willett,et al.  Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. , 2004, Organic & biomolecular chemistry.

[13]  Naomie Salim,et al.  Combination of Fingerprint-Based Similarity Coefficients Using Data Fusion , 2003, J. Chem. Inf. Comput. Sci..

[14]  Jérôme Hert,et al.  Comparison of Fingerprint-Based Methods for Virtual Screening Using Multiple Bioactive Reference Structures , 2004, J. Chem. Inf. Model..

[15]  Ramaswamy Nilakantan,et al.  New method for rapid characterization of molecular shapes: applications in drug design , 1993, J. Chem. Inf. Comput. Sci..

[16]  J. Mason,et al.  New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. , 1999, Journal of medicinal chemistry.

[17]  Qiang Zhang,et al.  Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. , 2006, Journal of medicinal chemistry.

[18]  Pierre Baldi,et al.  Graph kernels for chemical informatics , 2005, Neural Networks.

[19]  Malcolm J. McGregor,et al.  Pharmacophore Fingerprinting. 1. Application to QSAR and Focused Library Design , 1999, J. Chem. Inf. Comput. Sci..

[20]  Ling Xue,et al.  Mini-Fingerprints Detect Similar Activity of Receptor Ligands Previously Recognized Only by Three-Dimensional Pharmacophore-Based Methods. , 2001 .