All-Optical Reinforcement Learning In Solitonic X-Junctions

Ethology has shown that animal groups or colonies can perform complex calculation distributing simple decision-making processes to the group members. For example ant colonies can optimize the trajectories towards the food by performing both a reinforcement (or a cancellation) of the pheromone traces and a switch from one path to another with stronger pheromone. Such ant’s processes can be implemented in a photonic hardware to reproduce stigmergic signal processing. We present innovative, completely integrated X-junctions realized using solitonic waveguides which can provide both ant’s decision-making processes. The proposed X-junctions can switch from symmetric (50/50) to asymmetric behaviors (80/20) using optical feedbacks, vanishing unused output channels or reinforcing the used ones.

[1]  Mathieu Chauvet,et al.  Pyroliton: pyroelectric spatial soliton. , 2009, Optics express.

[2]  Wolfgang Osten,et al.  An optical solution for the traveling salesman problem. , 2007, Optics express.

[3]  Mihai Oltean,et al.  Solving the Hamiltonian path problem with a light-based computer , 2007, Natural Computing.

[4]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[5]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[6]  G I Stegeman,et al.  All-optical switching in a nonlinear GaAlAs X junction. , 1993, Optics letters.

[7]  M. Bazzan,et al.  Luminescence-induced photorefractive spatial solitons , 2010 .

[8]  W. Ramadan,et al.  Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides , 2004 .

[9]  E. Fazio,et al.  Design of a refractive index sensor based on surface soliton waveguides , 2013 .

[10]  E. Fazio,et al.  Dynamics of second-harmonic generation in a photovoltaic photorefractive quadratic medium , 2010 .

[11]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[12]  E. Fazio,et al.  3-D integrated optical interconnect induced by self-focused beam , 2006 .

[13]  Tien D. Kieu,et al.  Quantum Algorithm for Hilbert's Tenth Problem , 2001, ArXiv.

[14]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[15]  Robert S. Feigelson,et al.  Waveguides induced by photorefractive screening solitons , 1997, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[16]  Shlomi Dolev,et al.  Masking traveling beams: Optical solutions for NP-complete problems, trading space for time , 2010, Theor. Comput. Sci..

[17]  E. Fazio,et al.  Numerical Analysis of Waveguiding in Luminescence-Induced Spatial Soliton Channels , 2012, IEEE Journal of Quantum Electronics.

[18]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[19]  Amnon Yariv,et al.  Self-trapping of optical beams in photorefractive media , 1993, Frontiers in Nonlinear Optics.

[20]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[21]  J. Fischer On the Duality of Regular and Local Functions , 2017 .

[22]  Alain Barthélémy,et al.  Propagation soliton et auto-confinement de faisceaux laser par non linéarité optique de Kerr , 1985 .

[23]  Mathieu Chauvet,et al.  Novel paradigm for integrated photonics circuits: transient interconnection network , 2017, OPTO.

[24]  Nikolay I. Zheludev,et al.  All-Optical Implementation of the Ant Colony Optimization Algorithm , 2016, Scientific Reports.

[25]  Thomas J. Naughton,et al.  Photonic neural networks , 2012, Nature Physics.

[26]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[27]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[28]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[29]  Z. Ezziane DNA computing: applications and challenges , 2006 .

[30]  Lloyd M. Smith,et al.  DNA computing on surfaces , 2000, Nature.

[31]  Scott Aaronson,et al.  Guest Column: NP-complete problems and physical reality , 2005, SIGA.

[32]  F. Devaux,et al.  Observation of photorefractive simultons in lithium niobate. , 2010, Optics express.

[33]  Saeed Jalili,et al.  A new light-based solution to the Hamiltonian path problem , 2013, Future Gener. Comput. Syst..

[34]  M. Segev,et al.  Steady-state spatial screening solitons in photorefractive materials with external applied field. , 1994, Physical review letters.

[35]  F. Reynaud,et al.  Single Mode Soliton Beam Waveguides , 1988, Other Conferences.

[36]  Saeed Jalili,et al.  Light-based solution for the dominating set problem. , 2012, Applied optics.

[37]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[38]  Nikolay I. Zheludev,et al.  An optical fiber network oracle for NP-complete problems , 2014, Light: Science & Applications.

[39]  Adrian Ankiewicz,et al.  Spatial-soliton x-junctions and couplers , 1993, OSA Annual Meeting.

[40]  Shlomi Dolev,et al.  Optical solution for bounded NP-complete problems. , 2007, Applied optics.

[41]  V. Vlad,et al.  3-D Integrated Optical Microcircuits in Lithium Niobate Written by Spatial Solitons , 2014 .

[42]  J. O'Brien Optical Quantum Computing , 2007, Science.