EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS

We present a class of exact solutions of the Einstein gravitational field equations describing spherically symmetric and static anisotropic stellar type configurations. The solution is represented in a closed integral form. The energy density and both radial and tangential pressure are finite and positive inside the anisotropic star. The energy density, radial pressure, pressure-density ratio and the adiabatic speed of sound are monotonically decreasing functions. Several stellar models with the anisotropy coefficient proportional to r2 are discussed, the values of the basic physical parameters of the star (radius, mass and red shift) and bound on anisotropy parameter is obtained.

[1]  T. Harko,et al.  Anisotropic charged fluid spheres in D space–time dimensions , 2000 .

[2]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[3]  O. Orlyansky Singularity-free static fluid spheres in general relativity , 1997 .

[4]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[5]  M. Mak,et al.  Charged static fluid spheres in general relativity , 1995 .

[6]  L. Herrera,et al.  Jeans Mass for Anisotropic Matter , 1995 .

[7]  D. Pant Varieties of new classes of interior solutions in general relativity , 1994 .

[8]  A. Mehra,et al.  Anisotropic spheres with variable energy density in general relativity , 1994 .

[9]  N. O. Santos,et al.  Dynamical instability for radiating anisotropic collapse , 1993 .

[10]  N. Pant,et al.  A new class of exact solutions in general relativity representing perfect fluid balls , 1993 .

[11]  G. Magli The dynamical structure of the Einstein equations for a non-rotating starss , 1993 .

[12]  H. Bondi Anisotropic spheres in general relativity , 1992 .

[13]  G. Magli,et al.  A generalization of the relativistic equilibrium equations for a non-rotating star , 1992 .

[14]  H. Knutsen Solutions for static gas spheres in general relativity , 1990 .

[15]  R. Maartens,et al.  Anisotropic spheres with uniform energy density in general relativity , 1989 .

[16]  L. Herrera,et al.  Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .

[17]  K. Krori,et al.  Some exact anisotropic solutions in general relativity , 1984 .

[18]  S. Bayin Anisotropic fluid spheres in general relativity , 1982 .

[19]  A. Sah,et al.  Class of solutions of Einstein's field equations for static fluid spheres , 1982 .

[20]  B. Stewart Conformally flat, anisotropic spheres in general relativity , 1982 .

[21]  L. Witten,et al.  Some models of anisotropic spheres in general relativity , 1981 .

[22]  P. Letelier Anisotropic fluids with two-perfect-fluid components , 1980 .

[23]  R. Adler A fluid sphere in general relativity , 1974 .

[24]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[25]  R. Sawyer Condensedπ−Phase in Neutron-Star Matter , 1972 .

[26]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .

[27]  H. Heintzmann New exact static solutions of einsteins field equations , 1969 .

[28]  A. Mehra Radially symmetric distribution of matter , 1966 .

[29]  H. Buchdahl General Relativistic Fluid Spheres , 1959 .