The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud

Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2, and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2D Gaussian fitting. The dense cores have dust temperatures of Td = 11–14 K, and H2 column densities of N H 2 = (0.36–2.5) × 1022 cm−2. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter α and found that 14 of the dense cores have α <2, while 16 of the dense cores have α >2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

[1]  M. Juvela,et al.  The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17 , 2017, 1711.04382.

[2]  M. Juvela,et al.  A CO survey on a sample of Herschel cold clumps , 2017, 1708.00017.

[3]  Jungha Kim,et al.  Star Formation Conditions in a Planck Galactic Cold Clump, G108.84–00.81 , 2017, 1707.00234.

[4]  Qizhou Zhang,et al.  A Massive Prestellar Clump Hosting No High-mass Cores , 2017, 1704.08264.

[5]  L. V. Tóth,et al.  Astrochemical Properties of Planck Cold Clumps , 2016, 1612.00488.

[6]  Jinghua Yuan,et al.  A multiwavelength observation and investigation of six infrared dark clouds , 2016, 1611.08794.

[7]  J. Francesco,et al.  THE FRAGMENTATION AND STABILITY OF HIERARCHICAL STRUCTURE IN SERPENS SOUTH , 2016, 1610.10066.

[8]  Qizhou Zhang,et al.  DENSE CORE PROPERTIES IN THE INFRARED DARK CLOUD G14.225-0.506 REVEALED BY ALMA , 2016, 1610.08581.

[9]  J. Pineda,et al.  The JCMT and Herschel Gould Belt Surveys: a comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495 , 2016, 1608.04353.

[10]  Tie Liu,et al.  GAS OF 96 PLANCK COLD CLUMPS IN THE SECOND QUADRANT , 2016 .

[11]  S. Molinari,et al.  Physical Properties of Galactic Planck Cold Cores revealed by the Hi-GAL survey , 2016, 1603.04102.

[12]  N. Peretto,et al.  A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey , 2016, 1602.03143.

[13]  Ping Chen,et al.  DENSE GAS IN MOLECULAR CORES ASSOCIATED WITH PLANCK GALACTIC COLD CLUMPS , 2016, 1601.04783.

[14]  M. Juvela,et al.  PLANCK COLD CLUMPS IN THE λ ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS 0 PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32–11.88 , 2015, 1511.09121.

[15]  J. Pineda,et al.  The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods , 2015, 1509.06385.

[16]  L. V. Tóth,et al.  Massive cold cloud clusters , 2015, Proceedings of the International Astronomical Union.

[17]  L. V. Tóth,et al.  Star formation in Taurus Auriga Perseus and California nebulae , 2015, Proceedings of the International Astronomical Union.

[18]  N. Peretto,et al.  A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.

[19]  G. Langston,et al.  AN AMMONIA SPECTRAL MAP OF THE L1495-B218 FILAMENTS IN THE TAURUS MOLECULAR CLOUD. I. PHYSICAL PROPERTIES OF FILAMENTS AND DENSE CORES , 2015, 1503.05179.

[20]  Qizhou Zhang,et al.  FRAGMENTATION OF MOLECULAR CLUMPS AND FORMATION OF A PROTOCLUSTER , 2015, 1503.03017.

[21]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar discs in L 1495 , 2015, 1502.07946.

[22]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.

[23]  C. A. Oxborrow,et al.  Planck 2015 results - XXVIII. The Planck Catalogue of Galactic cold clumps , 2015, 1502.01599.

[24]  L. V. Tóth,et al.  FOLLOW-UP OBSERVATIONS TOWARD PLANCK COLD CLUMPS WITH GROUND-BASED RADIO TELESCOPES , 2014, 1410.6979.

[25]  Per Friberg,et al.  SCUBA-2: an update on the performance of the 10,000 pixel bolometer camera after two years of science operation at the JCMT , 2014, Astronomical Telescopes and Instrumentation.

[26]  K. Menten,et al.  ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde , 2017, 1711.10012.

[27]  N. Peretto,et al.  Properties of starless and prestellar cores in Taurus revealed by Herschel SPIRE/PACS imaging , 2014, 1401.7871.

[28]  Shu-ichiro Inutsuka,et al.  From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation , 2013, 1312.6232.

[29]  Tie Liu,et al.  MAPPING STUDY OF 71 PLANCK COLD CLUMPS IN THE TAURUS, PERSEUS, AND CALIFORNIA COMPLEXES , 2013 .

[30]  M. Tamura,et al.  The AKARI FIS YSO Catalogue , 2013, 1309.6258.

[31]  P. Goldsmith,et al.  LOW VIRIAL PARAMETERS IN MOLECULAR CLOUDS: IMPLICATIONS FOR HIGH-MASS STAR FORMATION AND MAGNETIC FIELDS , 2013, 1308.5679.

[32]  Tie Liu,et al.  GASEOUS CO ABUNDANCE—AN EVOLUTIONARY TRACER FOR MOLECULAR CLOUDS , 2013, 1306.0046.

[33]  Canadian Institute for Theoretical Astrophysics,et al.  First results from the Herschel Gould Belt Survey in Taurus , 2013, 1304.4098.

[34]  J. Kauffmann,et al.  Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region , 2013, 1303.2118.

[35]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[36]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[37]  Sheng Li,et al.  Development of Superconducting Spectroscopic Array Receiver: A Multibeam 2SB SIS Receiver for Millimeter-Wave Radio Astronomy , 2012, IEEE Transactions on Terahertz Science and Technology.

[38]  Tie Liu,et al.  MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX , 2012, 1207.0881.

[39]  Di Li,et al.  GAS EMISSIONS IN PLANCK COLD DUST CLUMPS—A SURVEY OF THE J = 1–0 TRANSITIONS OF 12CO, 13CO, AND C18O , 2012, 1206.7027.

[40]  L. Loinard,et al.  VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. V. DYNAMICAL MASS, DISTANCE, AND RADIO STRUCTURE OF V773 Tau A , 2011, 1112.0114.

[41]  P. Caselli Observational Studies of Pre-Stellar Cores and Infrared Dark Clouds , 2011, Proceedings of the International Astronomical Union.

[42]  A. Goodman,et al.  STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS , 2010, 1010.2755.

[43]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[44]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[45]  Wolf B. Dapp,et al.  An analytic column density profile to fit prestellar cores , 2009, 0902.1779.

[46]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[47]  L. Loinard,et al.  VERY LONG BASELINE ARRAY ASTROMETRY OF LOW-MASS YOUNG STELLAR OBJECTS , 2008, 0804.4016.

[48]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[49]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[50]  K. Rice,et al.  Protostars and Planets V , 2005 .

[51]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[52]  David A. Williams,et al.  The molecular universe , 2002 .

[53]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[54]  Y. Fukui,et al.  C18O Observations of the Dense Cloud Cores and Star Formation in Ophiuchus , 2000 .

[55]  P. Caselli,et al.  CO Depletion in the Starless Cloud Core L1544 , 1999 .

[56]  S. Charnley Chemical models of interstellar gas-grain processes — III. Molecular depletion in NGC 2024 , 1997 .

[57]  E. Bergin,et al.  Chemical Evolution in Preprotostellar and Protostellar Cores , 1997 .

[58]  A. Kawamura,et al.  A C 18O Survey of Dense Cloud Cores in Taurus: Core Properties , 1996 .

[59]  L. Hartmann,et al.  A new optical extinction law and distance estimate for the Taurus-Auriga molecular cloud , 1994 .

[60]  P. Andre',et al.  A submillimetre continuum survey of pre-protostellar cores , 1994 .

[61]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[62]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .

[63]  R. Loren Cobwebs of Ophiuchus. II. (C-13)O filament kinematics , 1989 .

[64]  A. Wolfendale,et al.  Corrections to virial estimates of molecular cloud masses , 1988 .

[65]  M. Jura,et al.  The C-12/C-13 isotope ratio of the interstellar medium in the neighborhood of the sun , 1987 .

[66]  R. H. Tipping,et al.  Vibration-rotational and rotational intensities for CO isotopes , 1983 .

[67]  A. Penzias Nuclear Processing and Isotopes in the Galaxy , 1980, Science.

[68]  E. Meištas,et al.  Interstellar extinction in the dark Taurus clouds. I , 1980 .

[69]  J. Elias A study of the Taurus dark cloud complex , 1978 .