Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins

[1]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[2]  L. Hurst,et al.  The proteins of linked genes evolve at similar rates , 2000, Nature.

[3]  R. DeSalle,et al.  Adaptive Evolution of Genes and Genomes , 2000, Heredity.

[4]  N. Grishin,et al.  From complete genomes to measures of substitution rate variability within and between proteins. , 2000, Genome research.

[5]  P. Sharp,et al.  Evidence for a high frequency of simultaneous double-nucleotide substitutions. , 2000, Science.

[6]  I. K. Jordan,et al.  The α-Mannosidases: Phylogeny and Adaptive Diversification , 2000 .

[7]  M. Boguski,et al.  Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Nei,et al.  Positive Darwinian selection after gene duplication in primate ribonuclease genes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[10]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[11]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[12]  Eugene V. Koonin,et al.  SEALS: A System for Easy Analysis of Lots of Sequences , 1997, ISMB.

[13]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[14]  P. Sharp,et al.  In search of molecular darwinism , 1997, Nature.

[15]  T Gojobori,et al.  Large-scale search for genes on which positive selection may operate. , 1996, Molecular biology and evolution.

[16]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[17]  H. Akashi Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. , 1994, Genetics.

[18]  N. Bianchi,et al.  Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. , 1993, Molecular biology and evolution.

[19]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[20]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[21]  T. Miyata,et al.  Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Morris Goodman,et al.  Darwinian evolution in the genealogy of haemoglobin , 1975, Nature.

[23]  T. Ohta,et al.  On some principles governing molecular evolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. S. Gonzalez,et al.  The alpha-mannosidases: phylogeny and adaptive diversification. , 2000, Molecular biology and evolution.

[25]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[26]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[27]  W. Ewens The neutral theory of molecular evolution , 1985 .

[28]  Motoo Kimura The neutral theory of molecular evolution. , 1979, Scientific American.