Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data.

[1]  P. Simpson NMR of proteins and nucleic acids , 2015 .

[2]  P. Güntert,et al.  Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins. , 2015, Biochemical and biophysical research communications.

[3]  Zeting Zhang,et al.  NMR studies of protein folding and binding in cells and cell-like environments. , 2015, Current opinion in structural biology.

[4]  Mehdi Mobli,et al.  Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. , 2014, Progress in nuclear magnetic resonance spectroscopy.

[5]  Mirko Cevec,et al.  C4′/H4′ selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of 13C-labeled RNAs , 2014, Journal of biomolecular NMR.

[6]  Michael Sattler,et al.  NMR approaches for structural analysis of multidomain proteins and complexes in solution. , 2014, Progress in nuclear magnetic resonance spectroscopy.

[7]  S. Hyberts,et al.  Perspectives in magnetic resonance: NMR in the post-FFT era. , 2014, Journal of magnetic resonance.

[8]  M. Mayzel,et al.  Time-resolved multidimensional NMR with non-uniform sampling , 2014, Journal of biomolecular NMR.

[9]  K. Wüthrich,et al.  NMR-profiles of protein solutions. , 2013, Biopolymers.

[10]  D. Frueh,et al.  NMR methods for structural studies of large monomeric and multimeric proteins. , 2013, Current opinion in structural biology.

[11]  M. Williamson Using chemical shift perturbation to characterise ligand binding. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[12]  M. Mayzel,et al.  Highly Efficient NMR Assignment of Intrinsically Disordered Proteins: Application to B- and T Cell Receptor Domains , 2013, PloS one.

[13]  S. Hyberts,et al.  Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra , 2013, Journal of biomolecular NMR.

[14]  I. Shimada,et al.  Functional dynamics of proteins revealed by solution NMR. , 2012, Current opinion in structural biology.

[15]  Daniel Nietlispach,et al.  Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins , 2012, Journal of biomolecular NMR.

[16]  Peter Güntert,et al.  A new algorithm for reliable and general NMR resonance assignment. , 2012, Journal of the American Chemical Society.

[17]  M. Billeter,et al.  Automated protein backbone assignment using the projection-decomposition approach , 2012, Journal of Biomolecular NMR.

[18]  Torsten Herrmann,et al.  The J-UNIO protocol for automated protein structure determination by NMR in solution , 2012, Journal of biomolecular NMR.

[19]  Gerhard Wagner,et al.  Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling , 2012, Journal of Biomolecular NMR.

[20]  H. Schwalbe,et al.  Solution NMR structure of proteorhodopsin. , 2011, Angewandte Chemie.

[21]  V. Orekhov,et al.  Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[22]  D. Rovnyak,et al.  Sensitivity enhancement for maximally resolved two‐dimensional NMR by nonuniform sampling , 2011, Magnetic resonance in chemistry : MRC.

[23]  V. Orekhov,et al.  Accelerated NMR spectroscopy by using compressed sensing. , 2011, Angewandte Chemie.

[24]  D. Nietlispach,et al.  Structure determination of the seven-helical transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy , 2010, Nature Structural &Molecular Biology.

[25]  Wolfgang Bermel,et al.  A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. , 2010, Journal of magnetic resonance.

[26]  Gordon M Crippen,et al.  SAGA: rapid automatic mainchain NMR assignment for large proteins , 2010, Journal of biomolecular NMR.

[27]  S. Hyberts,et al.  Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. , 2010, Journal of the American Chemical Society.

[28]  G. Wagner,et al.  Coupled decomposition of four-dimensional NOESY spectra. , 2009, Journal of the American Chemical Society.

[29]  S. Hyberts,et al.  FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation , 2009, Journal of biomolecular NMR.

[30]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[31]  B. Brutscher,et al.  Highly automated protein backbone resonance assignment within a few hours: the «BATCH» strategy and software package , 2009, Journal of biomolecular NMR.

[32]  Arash Bahrami,et al.  Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy , 2009, PLoS Comput. Biol..

[33]  Peter Güntert,et al.  Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm , 2009, Journal of biomolecular NMR.

[34]  Kurt Wüthrich,et al.  APSY-NMR with proteins: practical aspects and backbone assignment , 2008, Journal of biomolecular NMR.

[35]  Kurt Wüthrich,et al.  Solution NMR structure determination of proteins revisited , 2008, Journal of biomolecular NMR.

[36]  Francesco Fiorito,et al.  Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY , 2008, Journal of biomolecular NMR.

[37]  Torsten Herrmann,et al.  Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH , 2008, Journal of biomolecular NMR.

[38]  K. Kazimierczuk,et al.  Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. , 2007, Journal of magnetic resonance.

[39]  P. Schanda,et al.  A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. , 2007, Journal of magnetic resonance.

[40]  Michael Nilges,et al.  ARIA2: Automated NOE assignment and data integration in NMR structure calculation , 2007, Bioinform..

[41]  Gerhard Wagner,et al.  Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments of large proteins. , 2006, Journal of the American Chemical Society.

[42]  Robert Powers,et al.  A topology‐constrained distance network algorithm for protein structure determination from NOESY data , 2005, Proteins.

[43]  Arash Bahrami,et al.  High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. , 2005, Journal of the American Chemical Society.

[44]  Martin Billeter,et al.  Multiway decomposition of NMR spectra with coupled evolution periods. , 2005, Journal of the American Chemical Society.

[45]  V. Orekhov,et al.  Optimization of resolution and sensitivity of 4D NOESY using Multi-dimensional Decomposition , 2005, Journal of biomolecular NMR.

[46]  Vladislav Yu Orekhov,et al.  High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. , 2005, Journal of the American Chemical Society.

[47]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[48]  M. Zweckstetter,et al.  Mars - robust automatic backbone assignment of proteins , 2004, Journal of biomolecular NMR.

[49]  A. Stern,et al.  Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. , 2004, Journal of magnetic resonance.

[50]  Gerhard Wagner,et al.  IBIS – A tool for automated sequential assignment of protein spectra from triple resonance experiments , 2003, Journal of biomolecular NMR.

[51]  Kurt Wüthrich,et al.  NMR studies of structure and function of biological macromolecules (Nobel lecture). , 2003, Angewandte Chemie.

[52]  K. Wüthrich NMR-Untersuchungen von Struktur und Funktion biologischer Makromoleküle (Nobel-Vortrag)† , 2003 .

[53]  Brian E Coggins,et al.  PACES: Protein sequential assignment by computer-assisted exhaustive search , 2003, Journal of biomolecular NMR.

[54]  T. Szyperski,et al.  GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. , 2003, Journal of the American Chemical Society.

[55]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[56]  W. Gronwald,et al.  Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE) , 2002, Journal of biomolecular NMR.

[57]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[58]  Alexander Grishaev,et al.  CLOUDS, a protocol for deriving a molecular proton density via NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Billeter,et al.  MUNIN: A new approach to multi-dimensional NMR spectra interpretation , 2001, Journal of biomolecular NMR.

[60]  H. Atreya,et al.  A tracked approach for automated NMR assignments in proteins (TATAPRO) , 2000, Journal of biomolecular NMR.

[61]  H N Moseley,et al.  Automated analysis of NMR assignments and structures for proteins. , 1999, Current opinion in structural biology.

[62]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[63]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[64]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[65]  K Wüthrich,et al.  Automated sequence-specific NMR assignment of homologous proteins using the program GARANT , 1996, Journal of biomolecular NMR.

[66]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[67]  P. Schmieder,et al.  Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain , 1994, Journal of biomolecular NMR.

[68]  P. Schmieder,et al.  Application of nonlinear sampling schemes to COSY-type spectra , 1993, Journal of biomolecular NMR.

[69]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[70]  S. Fesik,et al.  Heteronuclear three-dimensional nmr spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra , 1988 .

[71]  K. Wüthrich,et al.  Digital filtering with a sinusoidal window function: An alternative technique for resolution enhancement in FT NMR , 1976 .

[72]  K. Wüthrich,et al.  APSY-NMR for protein backbone assignment in high-throughput structural biology , 2014, Journal of Biomolecular NMR.

[73]  Martin Billeter,et al.  Novel Sampling Approaches in Higher Dimensional NMR , 2012 .

[74]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[75]  H N Moseley,et al.  Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. , 2001, Methods in enzymology.

[76]  Horst Kessler,et al.  Automated backbone assignment of labeled proteins using the threshold accepting algorithm , 1998, Journal of biomolecular NMR.

[77]  J C Hoch,et al.  Modern spectrum analysis in nuclear magnetic resonance: alternatives to the Fourier transform. , 1989, Methods in enzymology.