Probabilistic Inference with Generating Functions for Population Dynamics of Unmarked Individuals

PROBABILISTIC INFERENCE WITH GENERATING FUNCTIONS FOR POPULATION DYNAMICS OF UNMARKED INDIVIDUALS

[1]  P. Consul,et al.  A Generalization of the Poisson Distribution , 1973 .

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[4]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[5]  C P Farrington,et al.  Branching process models for surveillance of infectious diseases controlled by mass vaccination. , 2003, Biostatistics.

[6]  J. Nichols,et al.  COMDYN: Software to study the dynamics of animal communities using a capture-recapture approach , 1999 .

[7]  Kevin Winner,et al.  Learning in Integer Latent Variable Models with Nested Automatic Differentiation , 2018, ICML.

[8]  C. R. Heathcote,et al.  A Branching Process Allowing Immigration , 1965 .

[9]  J. Wendelberger Adventures in Stochastic Processes , 1993 .

[10]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[11]  L. Madsen,et al.  An asymptotic approximation to the N‐mixture model for the estimation of disease prevalence , 2018, Biometrics.

[12]  W. Link,et al.  Observer differences in the North American Breeding Bird Survey , 1994 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  J. Andrew Royle,et al.  Inference about density and temporary emigration in unmarked populations. , 2011, Ecology.

[15]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[16]  John R. Sauer,et al.  Monitoring Bird Populations by Point Counts , 2012 .

[17]  L. Madsen,et al.  Models for Estimating Abundance from Repeated Counts of an Open Metapopulation , 2011, Biometrics.

[18]  Erlend B. Nilsen,et al.  The risks of learning: confounding detection and demographic trend when using count-based indices for population monitoring , 2014, Ecology and evolution.

[19]  J Andrew Royle,et al.  Modeling structured population dynamics using data from unmarked individuals. , 2014, Ecology.

[20]  J. Andrew Royle,et al.  Estimating species richness and accumulation by modeling species occurrence and detectability. , 2006, Ecology.

[21]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[22]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[23]  Kevin Winner,et al.  Probabilistic Inference with Generating Functions for Poisson Latent Variable Models , 2016, NIPS.

[24]  Jessica C. Stanton,et al.  Decline of the North American avifauna , 2019, Science.

[25]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[26]  M. Cheylan,et al.  Estimating abundance and population trends when detection is low and highly variable: A comparison of three methods for the Hermann's tortoise , 2013 .

[27]  K. Gross,et al.  Robustness and uncertainty in estimates of butterfly abundance from transect counts , 2007, Population Ecology.

[28]  Asymptotic inference for partially observed branching processes , 2011, Advances in Applied Probability.

[29]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[30]  Richard B. Chandler,et al.  Improved state-space models for inference about spatial and temporal variation in abundance from count data , 2015 .

[31]  Dan Suciu,et al.  Lifted Inference Seen from the Other Side : The Tractable Features , 2010, NIPS.

[32]  J. Andrew Royle,et al.  Spatially explicit models for inference about density in unmarked or partially marked populations , 2011, 1112.3250.

[33]  Pierre Taberlet,et al.  Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus , 2012 .

[34]  S. Lauritzen Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models , 1992 .

[35]  J. Andrew Royle,et al.  Trend estimation in populations with imperfect detection , 2009 .

[36]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[37]  J. Barlow,et al.  Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science , 2014, The Journal of applied ecology.

[38]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[39]  Subhransu Maji,et al.  MistNet: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks , 2019, Methods in Ecology and Evolution.

[40]  F. Galton,et al.  On the Probability of the Extinction of Families , 1875 .

[41]  W. Link,et al.  Estimating equations estimates of trends , 1994 .

[42]  Carlos Guestrin,et al.  Inference with Multivariate Heavy-Tails in Linear Models , 2010, NIPS.

[43]  W. Kendall,et al.  Making Great Leaps Forward: Accounting for Detectability in Herpetological Field Studies , 2007 .

[44]  James D. Nichols,et al.  Occupancy models for citizen‐science data , 2019, Methods in Ecology and Evolution.

[45]  W. G. Horner,et al.  A new method of solving numerical equations of all orders, by continuous approximation , 1815 .

[46]  Kevin Winner,et al.  Inference in a Partially Observed Queuing Model with Applications in Ecology , 2015, ICML.

[47]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[48]  D. MacKenzie Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence , 2005 .

[49]  Kevin Winner,et al.  Exact Inference for Integer Latent-Variable Models , 2017, ICML.

[50]  J. Andrew Royle,et al.  MODELING AVIAN ABUNDANCE FROM REPLICATED COUNTS USING BINOMIAL MIXTURE MODELS , 2005 .

[51]  Zoubin Ghahramani,et al.  An Introduction to Hidden Markov Models and Bayesian Networks , 2001, Int. J. Pattern Recognit. Artif. Intell..

[52]  Richard B. Chandler,et al.  unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance , 2011 .

[53]  Stefano Ermon,et al.  Variable Elimination in the Fourier Domain , 2015, ICML.

[54]  Kevin Winner,et al.  Statistical inference for home range overlap , 2018, Methods in Ecology and Evolution.

[55]  S. Derivative Automatic Differentiation of Functions of Derivatives , 1985 .

[56]  C. Kenneth Dodd,et al.  Amphibian Ecology and Conservation: A Handbook of Techniques , 2009 .

[57]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[58]  T. Heskes,et al.  Extended Version of “ Expectation propagation for approximate inference in dynamic Bayesian networks ” , 2003 .

[59]  J. Nichols,et al.  A DOUBLE-OBSERVER APPROACH FOR ESTIMATING DETECTION PROBABILITY AND ABUNDANCE FROM POINT COUNTS , 2000 .

[60]  L. Haines Maximum likelihood estimation for N‐mixture models , 2016, Biometrics.

[61]  J. Nichols,et al.  ESTIMATING SPECIES RICHNESS: THE IMPORTANCE OF HETEROGENEITY IN SPECIES DETECTABILITY , 1998 .

[62]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[63]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[64]  Gideon Weiss,et al.  Sojourn Time Estimation in an M/G/∞ Queue with Partial Information , 2013, Journal of Applied Probability.

[65]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[66]  J. Sauer,et al.  Topics in route-regression analysis , 1990 .

[67]  C. Zonneveld Estimating death rates from transect counts , 1991 .

[68]  M. Freeman,et al.  Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. , 2008, Ecology.

[69]  William A. Link,et al.  ESTIMATION OF POPULATION TRAJECTORIES FROM COUNT DATA , 1997 .

[70]  Frank R. Kschischang,et al.  On factor graphs and the Fourier transform , 2005, IEEE Transactions on Information Theory.

[71]  V. Panaretos Partially observed branching processes for stochastic epidemics , 2007, Journal of mathematical biology.

[72]  J. Andrew Royle N‐Mixture Models for Estimating Population Size from Spatially Replicated Counts , 2004, Biometrics.

[73]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[74]  W. Link,et al.  ESTIMATING POPULATION CHANGE FROM COUNT DATA: APPLICATION TO THE NORTH AMERICAN BREEDING BIRD SURVEY , 1998 .

[75]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[76]  Andreas Griewank,et al.  Evaluating higher derivative tensors by forward propagation of univariate Taylor series , 2000, Math. Comput..