Analysis and Passive Synthesis of Immittance for Fractional-Order Two-Element-Kind Circuit

Fractional circuits have attracted an extensive attention of scholars and researchers for their superior performance and potential applications. The passive realization of the fractional-order immittance function plays an important role in fractional circuits theory, which is useful in fractional circuits design and modeling. This paper deals with the analysis and passive synthesis of fractional two-element-kind network. Firstly, the time-domain response of fractional two-element-kind network is analyzed based on its immittance function expressions, and the response shows oscillation only in fractional $$ L_{\beta } C_{\alpha } $$LβCα circuits. Then, necessary and sufficient conditions to realize the fractional-order immittance functions by a passive network with only two kinds of elements are obtained in view of impedance scaling. A procedure is also proposed to realize such immittance functions using two-element-kind network. Finally, three examples are given to illustrate the proposed method.

[1]  J. Rosales,et al.  RLC electrical circuit of non-integer order , 2013 .

[2]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[3]  Richard L. Magin,et al.  On the fractional signals and systems , 2011, Signal Process..

[4]  Guishu Liang,et al.  Passive Synthesis of a Class of Fractional Immittance Function Based on Multivariable Theory , 2017, J. Circuits Syst. Comput..

[5]  Mohammad Saleh Tavazoei,et al.  Realizability of Fractional-Order Impedances by Passive Electrical Networks Composed of a Fractional Capacitor and RLC Components , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[7]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional Circuit , 2011 .

[9]  Karabi Biswas,et al.  Realization of Fractional Order Elements , 2017 .

[10]  Gabor C. Temes,et al.  Introduction to Circuit Synthesis and Design , 1977 .

[11]  Ahmed S. Elwakil,et al.  Experimental verification of filters using fractional-order capacitor and inductor emulators , 2016, 2016 39th International Conference on Telecommunications and Signal Processing (TSP).

[12]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[13]  Karabi Biswas,et al.  Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Jun-Sheng Duan,et al.  The zeros of the solutions of the fractional oscillation equation , 2014 .

[15]  Mohammad Saleh Tavazoei,et al.  Passive Realization of Fractional-Order Impedances by a Fractional Element and RLC Components: Conditions and Procedure , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Siddhartha Sen,et al.  Optimal Design for Realizing a Grounded Fractional Order Inductor Using GIC , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[18]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[19]  Guishu Liang,et al.  Fractional transmission line model of oil-immersed transformer windings considering the frequency-dependent parameters , 2017 .

[20]  Debasmita Mondal,et al.  Design and performance study of phase‐locked loop using fractional‐order loop filter , 2015, Int. J. Circuit Theory Appl..

[21]  Costas Psychalinos,et al.  0.5‐V fractional‐order companding filters , 2015, Int. J. Circuit Theory Appl..

[22]  Ahmed S. Elwakil,et al.  First-Order Filters Generalized to the fractional Domain , 2008, J. Circuits Syst. Comput..

[23]  Jean-Michel Vinassa,et al.  Fractional non-linear modelling of ultracapacitors , 2010 .

[24]  A. G. Radwan,et al.  Resonance and Quality Factor of the $RL_{\alpha} C_{\alpha}$ Fractional Circuit , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[25]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[26]  Gangquan Si,et al.  The fractional-order state-space averaging modeling of the Buck–Boost DC/DC converter in discontinuous conduction mode and the performance analysis , 2015 .

[27]  Mohammad Saleh Tavazoei,et al.  Minimal Realizations for Some Classes of Fractional Order Transfer Functions , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[28]  Carl F. Lorenzo,et al.  Energy storage and loss in fractional-order circuit elements , 2015, IET Circuits Devices Syst..

[29]  Tadeusz Kaczorek,et al.  Positive Fractional Electrical Circuits , 2015 .

[30]  Khaled N. Salama,et al.  Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites , 2013 .

[31]  Janusz Walczak,et al.  Analysis of the Transient State in a Series Circuit of the Class $$RL_{\beta }C_{\alpha }$$RLβCα , 2016, Circuits Syst. Signal Process..

[32]  Ahmed S. Elwakil,et al.  Electronically Tunable Fully Integrated Fractional-Order Resonator , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  Guishu Liang,et al.  Positive‐real property of passive fractional circuits in W‐domain , 2018, Int. J. Circuit Theory Appl..

[34]  Khaled N. Salama,et al.  Fractional-Order RC and RL Circuits , 2012, Circuits Syst. Signal Process..

[35]  Guishu Liang,et al.  Wide-band modeling of cables based on the fractional order differential theory , 2011, 2011 7th Asia-Pacific International Conference on Lightning.

[36]  Guishu Liang,et al.  Wide-band modelling and transient analysis of the multi-conductor transmission lines system considering the frequency-dependent parameters based on the fractional calculus theory , 2016 .

[37]  Agnieszka Jakubowska-Ciszek,et al.  Analysis of the transient state in a parallel circuit of the class RLβCα , 2018, Appl. Math. Comput..

[38]  J. A. Tenreiro Machado,et al.  And I say to myself: “What a fractional world!” , 2011 .

[39]  Ahmed Gomaa Radwan,et al.  Fundamentals of fractional-order LTI circuits and systems: number of poles, stability, time and frequency responses , 2016, Int. J. Circuit Theory Appl..

[40]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[41]  Guishu Liang,et al.  Sensitivity Analysis of Networks with Fractional Elements , 2017, Circuits Syst. Signal Process..

[42]  K. Diethelm Mittag-Leffler Functions , 2010 .

[43]  Ahmed M. Soliman,et al.  CCII based fractional filters of different orders , 2013, Journal of advanced research.

[44]  Jan Jerabek,et al.  Reconfigurable Fractional-Order Filter with Electronically Controllable Slope of Attenuation, Pole Frequency and Type of Approximation , 2017, J. Circuits Syst. Comput..

[45]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  Ahmed S. Elwakil,et al.  Guest Editorial Fractional-Order Circuits and Systems , 2013, IEEE J. Emerg. Sel. Topics Circuits Syst..

[47]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[48]  Ahmed S. Elwakil,et al.  Fractional-order models of supercapacitors, batteries and fuel cells: a survey , 2015, Materials for Renewable and Sustainable Energy.

[49]  Guishu Liang,et al.  Multivariate theory‐based passivity criteria for linear fractional networks , 2018, Int. J. Circuit Theory Appl..

[50]  A. Elwakil,et al.  On the stability of linear systems with fractional-order elements , 2009 .

[51]  E. Guillemin Synthesis of passive networks : theory and methods appropriate to the realization and approximation problems , 1957 .

[52]  M. Ortigueira An introduction to the fractional continuous-time linear systems: the 21st century systems , 2008, IEEE Circuits and Systems Magazine.

[53]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[54]  T. Kaczorek,et al.  Fractional Linear Systems and Electrical Circuits , 2014 .

[55]  Xin-Ping Guan,et al.  Necessary and Sufficient Stability Criteria for a Class of Fractional-Order Delayed Systems , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.