Looking at Vector Space and Language Models for IR Using Density Matrices

In this work, we conduct a joint analysis of both Vector Space and Language Models for IR using the mathematical framework of Quantum Theory. We shed light on how both models allocate the space of density matrices. A density matrix is shown to be a general representational tool capable of leveraging capabilities of both VSM and LM representations thus paving the way for a new generation of retrieval models. We analyze the possible implications suggested by our findings.

[1]  Guido Zuccon,et al.  Using the Quantum Probability Ranking Principle to Rank Interdependent Documents , 2010, ECIR.

[2]  Massimo Melucci,et al.  A basis for information retrieval in context , 2008, TOIS.

[3]  Yiyu Yao,et al.  On modeling information retrieval with probabilistic inference , 1995, TOIS.

[4]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[6]  Jun Wang,et al.  How Quantum Theory Is Developing the Field of Information Retrieval , 2010, AAAI Fall Symposium: Quantum Informatics for Cognitive, Social, and Semantic Processes.

[7]  Mounia Lalmas,et al.  On using a quantum physics formalism for multidocument summarization , 2012, J. Assoc. Inf. Sci. Technol..

[8]  Gunnar Rätsch,et al.  Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection , 2004, J. Mach. Learn. Res..

[9]  Jian-Yun Nie,et al.  Modeling latent topic interactions using quantum interference for information retrieval , 2013, CIKM.

[10]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[11]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[12]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[13]  Claudio Carpineto,et al.  A Survey of Automatic Query Expansion in Information Retrieval , 2012, CSUR.

[14]  Massimo Melucci An Investigation of Quantum Interference in Information Retrieval , 2010, IRFC.

[15]  Manfred K. Warmuth,et al.  Bayesian generalized probability calculus for density matrices , 2009, Machine Learning.

[16]  C. J. van Rijsbergen,et al.  What can quantum theory bring to information retrieval , 2010, CIKM.

[17]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[18]  A. Holevo Statistical structure of quantum theory , 2001 .

[19]  C. J. van Rijsbergen,et al.  Quantum Mechanics and Information Retrieval , 2011, Advanced Topics in Information Retrieval.

[20]  Jianfeng Gao,et al.  Dependence language model for information retrieval , 2004, SIGIR '04.

[21]  Alistair Moffat,et al.  Exploring the similarity space , 1998, SIGF.

[22]  Guido Zuccon,et al.  On the use of Complex Numbers in Quantum Models for Information Retrieval , 2011, ICTIR.

[23]  S. Peters,et al.  Quantum Logic of Word Meanings : Concept Lattices in Vector Space Models , 2003 .

[24]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[25]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[26]  Yoshua Bengio,et al.  Modeling term dependencies with quantum language models for IR , 2013, SIGIR.

[27]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[28]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[29]  Dawei Song,et al.  A Novel Re-ranking Approach Inspired by Quantum Measurement , 2011, ECIR.

[30]  I. Pitowsky Quantum Probability ― Quantum Logic , 1989 .

[31]  Massimo Melucci,et al.  Deriving a Quantum Information Retrieval Basis , 2013, Comput. J..