A Multi-Resolution Content-Based Retrieval Approach for Geographic Images

Current retrieval methods in geographic image databases use only pixel-by-pixel spectral information. Texture is an important property of geographical images that can improve retrieval effectiveness and efficiency. In this paper, we present a content-based retrieval approach that utilizes the texture features of geographical images. Various texture features are extracted using wavelet transforms. Based on the texture features, we design a hierarchical approach to cluster geographical images for effective and efficient retrieval, measuring distances between feature vectors in the feature space. Using wavelet-based multi-resolution decomposition, two different sets of texture features are formulated for clustering. For each feature set, different distance measurement techniques are designed and experimented for clustering images in a database. The experimental results demonstrate that the retrieval efficiency and effectiveness improve when our clustering approach is used.

[1]  R. M. Haralick,et al.  Pattern recognition with measurement space and spatial clustering for multiple images , 1969 .

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[5]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[6]  J. Modestino,et al.  Texture discrimination based upon an assumed stochastic texture model , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[7]  Azriel Rosenfeld,et al.  Mosaic Models for Textures , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  J. R. Jensen SPECTRAL AND TEXTURAL FEATURES TO CLASSIFY ELUSIVE LAND COVER AT THE URBAN FRINGE , 1979 .

[9]  David A. Landgrebe,et al.  The development of a spectral-spatial classifier for earth observational data , 1980, Pattern Recognit..

[10]  A. Rosenfeld,et al.  Mosaic Models for Textures , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  A. D. Gordon,et al.  Classification : Methods for the Exploratory Analysis of Multivariate Data , 1981 .

[12]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[14]  W. Stromberg,et al.  A Fourier-Based Textural Feature Extraction Procedure , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Mohan M. Trivedi,et al.  Use Of Texture Operators In Segmentation , 1986 .

[16]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[17]  Nick Roussopoulos,et al.  Faloutsos: "the r+- tree: a dynamic index for multidimensional objects , 1987 .

[18]  Shi-Kuo Chang,et al.  An Intelligent Image Database System , 1988, IEEE Trans. Software Eng..

[19]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[21]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[22]  D. Peddle,et al.  Image texture processing and data integration for surface pattern discrimination , 1991 .

[23]  D. Barber,et al.  SAR sea ice discrimination using texture statistics : a multivariate approach , 1991 .

[24]  Johan Wiklund,et al.  Multidimensional orientation : texture analysis and optical flow , 1991 .

[25]  P. A. Agbu,et al.  Comparisons between spectral mapping units derived from SPOT imager texture and field soil map units , 1991 .

[26]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[27]  Pasquale Savino,et al.  Automatic image Indexation and retrieval , 1991, RIAO.

[28]  M. Nellis,et al.  Seasonal variation of heterogeneity in the tallgrass prairie : a quantitative measure using remote sensing , 1991 .

[29]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[30]  Ramesh C. Jain,et al.  A Visual Information Management System for the Interactive Retrieval of Faces , 1993, IEEE Trans. Knowl. Data Eng..

[31]  Jian-Kang Wu,et al.  Facial image retrieval, identification, and inference system , 1993, MULTIMEDIA '93.

[32]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[33]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[34]  R. Ng,et al.  Eecient and Eeective Clustering Methods for Spatial Data Mining , 1994 .

[35]  K. Johnsson Segment-based land-use classification from SPOT satellite data , 1994 .

[36]  Shih-Fu Chang,et al.  Quad-tree segmentation for texture-based image query , 1994, MULTIMEDIA '94.

[37]  B. S. Manjunath,et al.  Image indexing using a texture dictionary , 1995, Other Conferences.

[38]  David Salesin,et al.  Fast multiresolution image querying , 1995, SIGGRAPH.

[39]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[40]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[42]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[43]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[44]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[45]  C. Woodcock,et al.  Combining Spectral and Texture Data in the Segmentation of Remotely Sensed Images , 1996 .

[46]  Aidong Zhang,et al.  Geographical image classification and retrieval , 1997, GIS '97.

[47]  Aidong Zhang,et al.  Approach to clustering large visual databases using wavelet transform , 1997, Electronic Imaging.

[48]  Aidong Zhang,et al.  Image Decomposition and Representation in Large Image Database Systems , 1997, J. Vis. Commun. Image Represent..

[49]  Aidong Zhang,et al.  Semantic clustering and querying on heterogeneous features for visual data , 1998, MULTIMEDIA '98.

[50]  Dirk Roose,et al.  Integer wavelet transforms using the lifting scheme , 1999 .

[51]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .