Role of iron in lithium-niobate crystals for the dark-storage time of holograms

The dark decay of holograms stored in iron-doped photorefractive lithium-niobate crystals is studied for samples containing up to 0.25 wt% Fe2O3 (iron concentration 71×1018 cm−3). The oxidation/reduction state of the crystals, i.e., the concentration ratio of Fe2+ and Fe3+ ions, is changed in a wide range by thermal annealing. The dark decay is attributed to two effects: An ionic dark conductivity arising from mobile protons and an electronic dark conductivity caused by tunneling of electrons between iron sites. The latter is proportional to the effective trap density, i.e., to the density of charge carriers which can be moved between the iron sites. The proportionality factor is the specific dark conductivity which increases exponentially with the third root of the entire iron concentration.

[1]  P. Townsend,et al.  Photorefractive fixing and related thermal effects in LiNbO3 , 1991 .

[2]  E. Krätzig,et al.  LiTaO3 as holographic storage material , 1978 .

[3]  A. I. Kuznetsov,et al.  Thermal Dissociation of Bipolarons in Reduced Undoped LiNbO3 , 1987 .

[4]  B. Dischler,et al.  Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods , 1977 .

[5]  E. Krätzig,et al.  Light-induced absorption changes in reduced lithium niobate , 1995 .

[6]  Karsten Buse,et al.  Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate , 1998 .

[7]  Karsten Buse,et al.  Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared , 1999 .

[8]  E. Krätzig,et al.  Holographic measurement of dark conductivity in LiNbO3:Ti:Fe planar optical waveguides , 1998 .

[9]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[10]  P B Bennett,et al.  The physiology of decompression illness. , 1995, Scientific American.

[11]  W. Bollmann,et al.  Incorporation and mobility of OH- ions in LiNbO3 crystals , 1977 .

[12]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[13]  A. Dhar,et al.  The AC conductivity and dielectric constant of lithium niobate single crystals , 1985 .

[14]  S. Marennikov,et al.  Transient optical storage in lithium niobate crystal , 1979 .

[15]  G W Burr,et al.  Pixel-matched holographic data storage with megabit pages. , 1997, Optics letters.

[16]  Karsten Buse,et al.  Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate , 1998 .

[17]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[18]  F. Agullo-lopez,et al.  Contributing bands to the optical absorption of reduced LiNbO3: thermal and optical excitation , 1989 .

[19]  D Psaltis,et al.  Compact, integrated dynamic holographic memory with refreshed holograms. , 1997, Optics letters.

[20]  Karsten Buse,et al.  ORIGIN OF THERMAL FIXING IN PHOTOREFRACTIVE LITHIUM NIOBATE CRYSTALS , 1997 .

[21]  Mirco Imlau,et al.  Lifetime of small polarons in iron-doped lithium–niobate crystals , 2000 .

[22]  Richard S. Muller,et al.  A narrow-band interference filter with photorefractive LiNbO3 , 1994 .

[23]  J H Hong,et al.  Compact holographic storage demonstrator with rapid access. , 1996, Applied optics.

[24]  George A. Rakuljic,et al.  Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm , 1994 .