Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces

The remarkable ability of geckos to climb and run rapidly on walls and ceilings has recently received considerable interest from many researchers. Significant progress has been made in understanding the attachment and detachment mechanisms and the fabrication of articulated gecko-inspired adhesives and structured surfaces. This article reviews the direct experiments that have investigated the properties of gecko hierarchical structures, i.e., the feet, toes, setae, and spatulae, and the corresponding models to ascertain the mechanical principles involved. Included in this review are reports on gecko-inspired surfaces and structures with strong adhesion forces, high ratios of adhesion and friction forces, anisotropic hierarchical structures that give rise to directional adhesion and friction, and “intelligent” attachment and detachment motions.

[1]  Peter H. Niewiarowski,et al.  Sticky Gecko Feet: The Role of Temperature and Humidity , 2008, PloS one.

[2]  M. Dresselhaus Carbon nanotubes , 1995 .

[3]  Carlo Menon,et al.  A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives , 2009 .

[4]  Ai Kah Soh,et al.  Peeling behavior of a bio-inspired nano-film on a substrate , 2010 .

[5]  Eduard Arzt,et al.  Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[6]  J. P. Sargent,et al.  A practical approach to the development of a synthetic Gecko tape , 2009 .

[7]  Carlo Menon,et al.  Direct molding of dry adhesives with anisotropic peel strength using an offset lift-off photoresist mold , 2009 .

[8]  A. Crosby,et al.  Controlling polymer adhesion with "pancakes". , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  Stanislav N. Gorb,et al.  Sticky Feet: From Animals to Materials , 2007 .

[10]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Chang Hyun Ko,et al.  Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. , 2009, Chemical communications.

[12]  Kellar Autumn,et al.  How Gecko Toes Stick , 2006 .

[13]  Y. W. Zhang,et al.  Sliding-induced non-uniform pre-tension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos , 2012, Journal of The Royal Society Interface.

[14]  Metin Sitti,et al.  Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[15]  H. Yao,et al.  Bio-inspired mechanics of bottom-up designed hierarchical materials: robust and releasable adhesion systems of gecko. , 2007 .

[16]  Metin Sitti,et al.  Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives , 2006 .

[17]  Liang Zhang,et al.  A generalized cohesive zone model of the peel test for pressure-sensitive adhesives , 2009 .

[18]  Dong Yun Lee,et al.  Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding , 2012 .

[19]  Ronald S. Fearing,et al.  Towards friction and adhesion from high modulus microfiber arrays , 2007 .

[20]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[21]  Stanislav N. Gorb,et al.  Adhesion Characteristics of Polyurethane for Bionic Hairy Foot , 2006 .

[22]  Naoe Hosoda,et al.  Influence of surface roughness on gecko adhesion. , 2007, Acta biomaterialia.

[23]  Lei Jiang,et al.  Directional adhesion of superhydrophobic butterfly wings. , 2007, Soft matter.

[24]  Yu Tian,et al.  Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System , 2007 .

[25]  Stanislav N. Gorb,et al.  The effect of surface roughness on the adhesion of elastic plates with application to biological systems , 2003 .

[26]  K. Autumn,et al.  Evidence for self-cleaning in gecko setae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Yu Tian,et al.  Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array , 2013, Scientific Reports.

[28]  Yu Tian,et al.  Adhesion and friction force coupling of gecko setal arrays: implications for structured adhesive surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[29]  Carlo Menon,et al.  Gecko Inspired Surface Climbing Robots , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[30]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[31]  Ronald S. Fearing,et al.  Attachment of fiber array adhesive through side contact , 2005 .

[32]  Ralph Spolenak,et al.  Adhesion design maps for fibrillar adhesives: the effect of shape. , 2009, Acta biomaterialia.

[33]  Anja Boisen,et al.  Three-dimensional microfabrication in negative resist using printed masks , 2006 .

[34]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Robert J Full,et al.  Orientation angle and the adhesion of single gecko setae , 2011, Journal of The Royal Society Interface.

[36]  G. Briggs,et al.  The effect of surface topography on the adhesion of elastic solids , 1977 .

[37]  S. Gorb,et al.  Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour , 2007, Journal of The Royal Society Interface.

[38]  Yu Tian,et al.  Gecko adhesion pad: a smart surface? , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[40]  Stanislav N. Gorb,et al.  Surface profile and friction force generated by insects , 2004 .

[41]  Stanislav N Gorb,et al.  Biological attachment devices: exploring nature's diversity for biomimetics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  K. Autumn,et al.  Mechanisms of Adhesion in Geckos1 , 2002, Integrative and comparative biology.

[43]  M. Sitti,et al.  Gecko-inspired directional and controllable adhesion. , 2008, Small.

[44]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  W. O. Friesen,et al.  Muscle function in animal movement: passive mechanical properties of leech muscle , 2007, Journal of Comparative Physiology A.

[46]  Ming Zhou,et al.  Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone , 2012, Journal of The Royal Society Interface.

[47]  Ronald S. Fearing,et al.  Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[48]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.

[49]  Ming Zhou,et al.  Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface , 2012 .

[50]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[51]  Zhendong Dai,et al.  Morphology and reaction force of toes of geckos freely moving on ceilings and walls , 2010 .

[52]  Carlo Menon,et al.  Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot , 2008 .

[53]  Bharat Bhushan,et al.  Fabrication and characterization of multi-level hierarchical surfaces. , 2012, Faraday discussions.

[54]  Yu Tian,et al.  The Crowding Model as a Tool to Understand and Fabricate Gecko-Inspired Dry Adhesives , 2009 .

[55]  Metin Sitti,et al.  Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. , 2009, ACS applied materials & interfaces.

[56]  Zhenhai Xia,et al.  Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. , 2012, ACS applied materials & interfaces.

[57]  Pavel Neuzil,et al.  Self‐Assembled Nanoparticles Based Fabrication of Gecko Foot‐Hair‐Inspired Polymer Nanofibers , 2007 .

[58]  Liangti Qu,et al.  Gecko‐Foot‐Mimetic Aligned Single‐Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties , 2007 .

[59]  Stanislav N. Gorb,et al.  Effect of real contact geometry on adhesion , 2006 .

[60]  R. Ruibal,et al.  The structure of the digital setae of lizards , 1965, Journal of morphology.

[61]  Chung-Yuen Hui,et al.  Constraints on Microcontact Printing Imposed by Stamp Deformation , 2002 .

[62]  S H Chen,et al.  Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Stanislav N. Gorb,et al.  Friction and adhesion in the tarsal and metatarsal scopulae of spiders , 2006, Journal of Comparative Physiology A.

[64]  Ralph Spolenak,et al.  Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy , 2005, Biology Letters.

[65]  Aaron Parness,et al.  A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime , 2009, Journal of The Royal Society Interface.

[66]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[67]  L. Léger,et al.  Adhesion enhancement through micropatterning at polydimethylsiloxane-acrylic adhesive interfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[68]  Alfred J. Crosby,et al.  Designing Model Systems for Enhanced Adhesion , 2007 .

[69]  Huajian Gao,et al.  Effects of contact shape on the scaling of biological attachments , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[71]  Eduard Arzt,et al.  Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices , 2007 .

[72]  Carlo Menon,et al.  Controllable biomimetic adhesion using embedded phase change material , 2010 .

[73]  Kahp Y. Suh,et al.  Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition , 2009 .

[74]  Ming Zhou,et al.  The Extended Peel Zone Model: Effect of Peeling Velocity , 2011 .

[75]  K. Turner,et al.  Vertical anisotropic microfibers for a gecko-inspired adhesive. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[76]  Eduard Arzt,et al.  Hierarchical Gecko‐Like Adhesives , 2009 .

[77]  Matt Wilkinson,et al.  Effects of humidity on the mechanical properties of gecko setae. , 2011, Acta biomaterialia.

[78]  Chung-Yuen Hui,et al.  Modeling the failure of an adhesive layer in a peel test , 2002 .

[79]  Bharat Bhushan,et al.  Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface , 2007 .

[80]  Ronald S Fearing,et al.  Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[81]  Bin Chen,et al.  Pre-tension generates strongly reversible adhesion of a spatula pad on substrate , 2009, Journal of The Royal Society Interface.

[82]  Yu Tian,et al.  Design and fabrication of gecko-inspired adhesives. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[83]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[84]  Ronald S. Fearing,et al.  Nanomolding based fabrication of synthetic gecko foot-hairs , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[85]  Richard H. C. Bonser,et al.  The Young's modulus of ostrich claw keratin , 2000 .

[86]  Ronald S. Fearing,et al.  Macromodel for the mechanics of gecko hair adhesion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[87]  Kellar Autumn,et al.  Ultrahydrophobicity indicates a non-adhesive default state in gecko setae , 2006, Journal of Comparative Physiology A.

[88]  Jae-Seob Kwak,et al.  A review of adhesion and friction models for gecko feet , 2010 .

[89]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[90]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[91]  C Majidi,et al.  Effective elastic modulus of isolated gecko setal arrays , 2006, Journal of Experimental Biology.

[92]  Bharat Bhushan,et al.  The adhesion model considering capillarity for gecko attachment system , 2008, Journal of The Royal Society Interface.

[93]  Robert J. Full,et al.  Ancestrally high elastic modulus of gecko setal β-keratin , 2007, Journal of The Royal Society Interface.

[94]  Shuichi Shoji,et al.  Three-dimensional micro-structures consisting of high aspect ratio inclined micro-pillars fabricated by simple photolithography , 2004 .

[95]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[96]  R. Fearing,et al.  Directional adhesion of gecko-inspired angled microfiber arrays , 2008 .

[97]  Aaron Parness,et al.  Rate-dependent frictional adhesion in natural and synthetic gecko setae , 2010, Journal of The Royal Society Interface.

[98]  Zhang Xiangjun,et al.  Experimental research of load effect on the anisotropic friction behaviors of gecko seta array , 2012 .

[99]  Stanislav N. Gorb,et al.  Mushroom-shaped geometry of contact elements in biological adhesive systems , 2007 .

[100]  Bharat Bhushan,et al.  Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. , 2007, Ultramicroscopy.

[101]  John Robertson,et al.  Surface properties of vertically aligned carbon nanotube arrays , 2008 .

[102]  W. Barnes,et al.  Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces , 2013, Journal of The Royal Society Interface.

[103]  Nigel E. Stork,et al.  Experimental Analysis of Adhesion of Chrysolina Polita (Chrysomelidae: Coleoptera) on a Variety of Surfaces , 1980 .

[104]  Metin Sitti,et al.  Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays , 2007 .

[105]  Hua Bai,et al.  Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. , 2008, ACS nano.

[106]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[107]  Huajian Gao,et al.  Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. , 2006 .

[108]  Bo N. J. Persson,et al.  On the mechanism of adhesion in biological systems , 2003 .

[109]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[110]  C. Greiner,et al.  SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography , 2007 .

[111]  R J Full,et al.  Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives , 2007, Proceedings of the National Academy of Sciences.

[112]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[113]  Carlo Menon,et al.  Deep UV patterning of acrylic masters for molding biomimetic dry adhesives , 2010 .

[114]  A. Bauer,et al.  Morphological correlates of the secondarily symmetrical pes of gekkotan lizards , 1997 .

[115]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[116]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[117]  Kimberly L. Turner,et al.  Gecko‐Inspired Dry Adhesive for Robotic Applications , 2011 .

[118]  Kimberly L. Turner,et al.  A Gecko‐Inspired Reversible Adhesive , 2008 .

[119]  Eduard Arzt,et al.  Gecko‐Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives , 2010, Advanced materials.

[120]  Anand Jagota,et al.  Mechanics of Adhesion Through a Fibrillar Microstructure1 , 2002, Integrative and comparative biology.

[121]  Stanislav N. Gorb,et al.  Geometry-controlled adhesion: revisiting the contact splitting hypothesis , 2011 .

[122]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Alexander Filippov,et al.  Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. , 2011, Journal of theoretical biology.

[124]  Shravanthi T. Reddy,et al.  Bioinspired Surfaces with Switchable Adhesion , 2007 .

[125]  Victor Samper,et al.  Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template , 2007 .

[126]  Metin Sitti,et al.  Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[127]  Chung-Yuen Hui,et al.  Numerical study of shearing of a microfibre during friction testing of a microfibre array , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[128]  Yu Tian,et al.  Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[129]  Tian Tang,et al.  Can a fibrillar interface be stronger and tougher than a non-fibrillar one? , 2005, Journal of The Royal Society Interface.

[130]  Was wir von Geckos lernen können , 2009 .

[131]  David Tabor,et al.  The effect of surface roughness on the adhesion of elastic solids , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[132]  Ralph Spolenak,et al.  Adhesion design maps for bio-inspired attachment systems. , 2005, Acta biomaterialia.

[133]  R. Full,et al.  Dynamics of geckos running vertically , 2006, Journal of Experimental Biology.

[134]  Eduard Arzt,et al.  Contact shape controls adhesion of bioinspired fibrillar surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[135]  R. Fearing,et al.  Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[136]  Matt Wilkinson,et al.  Changes in materials properties explain the effects of humidity on gecko adhesion , 2010, Journal of Experimental Biology.

[137]  S. Gorb,et al.  WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA , 2004 .

[138]  Pavel Neuzil,et al.  The nature of the gecko lizard adhesive force. , 2005, Biophysical journal.

[139]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[140]  Hongbo Zeng,et al.  Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. , 2009, The journal of physical chemistry. B.

[141]  S. Gorb,et al.  Spring model of biological attachment pads. , 2006, Journal of theoretical biology.

[142]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[143]  Bharat Bhushan,et al.  Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion' , 2006 .

[144]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.