Potential of hyperspectral remote sensing to estimate the yield of a Crambe abyssinica Hochst crop
暂无分享,去创建一个
Erivelto Mercante | Marcio Antonio Vilas Boas | Octavio Henrique Viana | Mauricio Guy de Andrade | Henrique Felipetto | Carlos Eduardo Vizzotto Cattani | Filipe Fontes Bombarda | C. Cattani | M. A. V. Boas | E. Mercante | Octávio Henrique Viana | Henrique Felipetto
[1] Fabio Henrique Rojo Baio,et al. USING PASSIVE AND ACTIVE MULTISPECTRAL SENSORS ON THE CORRELATION WITH THE PHENOLOGICAL INDICES OF COTTON , 2017 .
[2] Catherine Dehon,et al. Influence functions of the Spearman and Kendall correlation measures , 2010, Stat. Methods Appl..
[3] Minzan Li,et al. Variable rate fertilization based on spectral index and remote sensing , 2010, Asia-Pacific Remote Sensing.
[4] E. Eriksmoen,et al. Growth analysis of crambe , 1998 .
[5] D. Mulla. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .
[6] R. C. de Oliveira,et al. Crambe (Crambe abyssinica H.) development and productivity under different sowing densities. , 2015 .
[7] Xianjun Hao,et al. Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index , 2012 .
[8] L. Somavilla,et al. Temperatura basal, duração do ciclo e constante térmica para a cultura do crambe , 2011 .
[9] Hengbiao Zheng,et al. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops , 2017 .
[10] Lianru Gao,et al. Estimating foliar water content of winter wheat with hyperspectral image , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.
[11] Yi Ma,et al. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters , 2016, Comput. Electron. Agric..
[12] D. B. Teixeira,et al. Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+ com atributos do solo , 2013 .
[13] C. Willmott,et al. A refined index of model performance , 2012 .
[14] Suming Jin,et al. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances , 2005 .
[15] John M. Kovacs,et al. Separating Crop Species in Northeastern Ontario Using Hyperspectral Data , 2014, Remote. Sens..
[16] A. E. Battay,et al. Linear spectral unmixing to monitor crop growth in typical organic and inorganic amended arid soil , 2016 .
[17] Craig S. T. Daughtry,et al. Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices , 2013 .
[18] Thomas J. Jackson,et al. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006 , 2010 .
[19] A. Fontana,et al. O novo mapa de solos do Brasil: legenda atualizada. , 2011 .
[20] Reginaldo Ferreira Santos,et al. Assessment of a crambe (Crambe abyssinica Hochst) crop under no-tillage in different sowing dates , 2016 .
[21] Ivan Werncke,et al. Oilseed crop crambe as a source of renewable energy in Brazil , 2016 .
[22] V. Kakani,et al. Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression , 2017, Precision Agriculture.
[23] Weixing Cao,et al. Detection of rice phenology through time series analysis of ground-based spectral index data , 2016 .
[24] A. Genú,et al. Índice de Vegetação por Diferença Normalizada e Produtividade de Cultivares de Trigo Submetidas a Doses de Nitrogênio , 2015 .
[25] Gunter Menz,et al. Multitemporal spectroscopy for crop stress detection using band selection methods , 2008, Optical Engineering + Applications.