Nonlocal multi-scale traffic flow models: analysis beyond vector spaces

[1]  Thomas Lorenz Differential Equations for Closed Sets in a Banach Space , 2017 .

[2]  Jean-Pierre Aubin,et al.  Traffic Networks as Information Systems , 2017 .

[3]  Jean-Pierre Aubin,et al.  Traffic Networks as Information Systems: A Viability Approach , 2016 .

[4]  Sheila Scialanga,et al.  Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity , 2016, Networks Heterog. Media.

[5]  Thomas Lorenz,et al.  A Peano theorem for fuzzy differential equations with evolving membership grade , 2015, Fuzzy Sets Syst..

[6]  J. Aubin Regulation of Viable and Optimal Cohorts , 2015 .

[7]  Rinaldo M. Colombo,et al.  Nonlocal Systems of Conservation Laws in Several Space Dimensions , 2015, SIAM J. Numer. Anal..

[8]  Rinaldo M. Colombo,et al.  NonLocal Systems of Balance Laws in Several Space Dimensions with Applications to Laser Technolog , 2015, 1504.00163.

[9]  Mauro Garavello,et al.  Differential Equations Modeling Crowd Interactions , 2014, J. Nonlinear Sci..

[10]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[11]  Christina Surulescu,et al.  On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces , 2014 .

[12]  N. Pogodaev,et al.  On the modeling of moving populations through set evolution equations , 2014 .

[13]  B. Piccoli,et al.  Generalized Wasserstein Distance and its Application to Transport Equations with Source , 2012, 1206.3219.

[14]  Rinaldo M. Colombo,et al.  On the Control of Moving Sets: Positive and Negative Confinement Results , 2013, SIAM J. Control. Optim..

[15]  P. Kloeden,et al.  A Peano-Like Theorem for Stochastic Differential Equations with Nonlocal Sample Dependence , 2013 .

[16]  J. Carrillo,et al.  Measure Solutions for Some Models in Population Dynamics , 2011, 1112.0522.

[17]  Jean-Pierre Aubin Mutational and Morphological Analysis , 2012 .

[18]  Rinaldo M. Colombo,et al.  Confinement Strategies in a Model for the Interaction between Individuals and a Continuum , 2012, SIAM J. Appl. Dyn. Syst..

[19]  Rinaldo M. Colombo,et al.  Structured Populations, Cell Growth and Measure Valued Balance Laws , 2012 .

[20]  P. Kloeden,et al.  Stochastic morphological evolution equations , 2011 .

[21]  R. Colombo,et al.  Nonlocal Crowd Dynamics Models for Several Populations , 2011, 1110.3596.

[22]  B. Piccoli,et al.  Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes , 2011, 1106.2555.

[23]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[24]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[25]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[26]  P. Kloeden,et al.  Stochastic Differential Equations with Nonlocal Sample Dependence , 2010 .

[27]  Jean-Pierre Aubin,et al.  Macroscopic traffic models: Shifting from densities to "Celerities" , 2010, Appl. Math. Comput..

[28]  P. Gwiazda,et al.  A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients , 2010 .

[29]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[30]  R. Colombo,et al.  Balance laws as quasidifferential equations in metric spaces , 2009 .

[31]  L. Ambrosio,et al.  Uniqueness of signed measures solving the continuity equation for Osgood vector fields , 2008, 0807.1592.

[32]  P. Mucha Transport equation: extension of classical results for div $b\in$ BMO , 2008, 0806.1902.

[33]  Thomas Lorenz A Viability Theorem for Morphological Inclusions , 2008, SIAM J. Control. Optim..

[34]  Nonlocal Sources in Hyperbolic Balance Laws with Applications , 2008 .

[35]  L. Ambrosio Transport Equation and Cauchy Problem for Non-Smooth Vector Fields , 2008 .

[36]  R. Colombo,et al.  Hyperbolic Balance Laws with a Dissipative Non Local Source , 2007, 0712.1555.

[37]  R. Colombo,et al.  Differential Equations in Metric Spaces with Applications , 2007, 0712.0560.

[38]  S. Maniglia,et al.  Probabilistic representation and uniqueness results for measure-valued solutions of transport equations , 2007 .

[39]  R. Colombo,et al.  Non local balance laws in traffic models and crystal growth , 2007 .

[40]  Gianluca Crippa,et al.  Uniqueness, Renormalization, and Smooth Approximations for Linear Transport Equations , 2006, SIAM J. Math. Anal..

[41]  A. Murillo Tangential Regularity in the Space of Directional-Morphological Transitions £ , 2006 .

[42]  Ben Galin,et al.  The Arzelà-Ascoli Theorem , 2006 .

[43]  V. Lakshmikantham,et al.  Theory of Set Differential Equations in Metric Spaces , 2005 .

[44]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[45]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[46]  Cité Descartes,et al.  Renormalized solutions of some transport equations with partially W 1,1 velocities and applications , 2004 .

[47]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[48]  Thomas Lorenz Set-valued maps for image segmentation , 2001 .

[49]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[50]  A. Bressan On the Cauchy Problem for Nonlinear Hyperbolic Systems , 1998 .

[51]  Jürgen Elstrodt,et al.  Maß-und Integrationstheorie , 1996 .

[52]  Jean-Pierre Aubin,et al.  Mutational equations in metric spaces , 1993 .

[53]  L. Evans Measure theory and fine properties of functions , 1992 .

[54]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[55]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[56]  N. Pavel Nonlinear Evolution Operators and Semigroups , 1987 .

[57]  J. Vaillant,et al.  The Cauchy problem for nonlinear hyperbolic systems , 1986 .

[58]  A. Mukherjea,et al.  Real and Functional Analysis , 1978 .

[59]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .