Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting

Solid‐state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light‐emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state‐of‐the‐art input‐power‐density‐dependent power‐conversion efficiencies; potential improvements both in their peak power‐conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

[1]  M. Osinski,et al.  Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays , 1992 .

[2]  Chun-Yen Chang,et al.  Efficiency and Droop Improvement in InGaN/GaN Light-Emitting Diodes by Selective Carrier Distribution Manipulation , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[3]  M. Ueno,et al.  Optical Gain Spectroscopy of a Semipolar {2021}-Oriented Green InGaN Laser Diode , 2011 .

[4]  E. Fred Schubert,et al.  Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping , 2010 .

[5]  Fernando Ponce,et al.  Microstructure and electronic properties of InGaN alloys , 2003 .

[6]  S. Denbaars,et al.  Stress relaxation and critical thickness for misfit dislocation formation in (101¯0) and (3031¯) InGaN/GaN heteroepitaxy , 2012 .

[7]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[8]  Paul S. Martin,et al.  High performance thin-film flip-chip InGaN–GaN light-emitting diodes , 2006 .

[9]  Mathew C. Schmidt,et al.  Gain comparison in polar and nonpolarsemipolar gallium-nitride-based laser diodes , 2012 .

[10]  Chun-Hsiang Chang,et al.  High-brightness light-emitting diodes , 2011 .

[11]  Qimin Yan,et al.  Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes , 2012 .

[12]  F. Stadler,et al.  Highly efficient all‐nitride phosphor‐converted white light emitting diode , 2005 .

[13]  J. Piprek Nitride semiconductor devices : principles and simulation , 2007 .

[14]  W. Scheibenzuber,et al.  Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes , 2009 .

[15]  C. Zah,et al.  Development of semipolar laser diode , 2013 .

[16]  K. Streubel,et al.  Omnidirectional reflective contacts for light-emitting diodes , 2003, IEEE Electron Device Letters.

[17]  Jorg Hader,et al.  Gain of blue and cyan InGaN laser diodes , 2011 .

[18]  Takashi Mukai,et al.  365-nm ultraviolet-light-emitting diodes with an output power of over 400 mW , 2004, SPIE OPTO.

[19]  E. Schubert,et al.  Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency , 2012 .

[20]  Stephan Lutgen,et al.  Recent results of blue and green InGaN laser diodes for laser projection , 2011, OPTO.

[21]  Michael E. Coltrin,et al.  Solid-state lighting: an energy-economics perspective , 2010 .

[22]  S. Denbaars,et al.  Semipolar $({\hbox{20}}\bar{{\hbox{2}}}\bar{{\hbox{1}}})$ InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting , 2013, Journal of Display Technology.

[23]  Defect‐related recombination in InGaN‐lasers , 2008 .

[24]  J R A Beale,et al.  Solid State Electronic Devices , 1973 .

[25]  Nicolas Grandjean,et al.  Optical investigations and absorption coefficient determination of InGaN/GaN quantum wells , 2002 .

[26]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[27]  D. S. Sizov,et al.  Carrier Transport in InGaN MQWs of Aquamarine- and Green-Laser Diodes , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Heqing Wang,et al.  Barrier effect on hole transport and carrier distribution in InGaN∕GaN multiple quantum well visible light-emitting diodes , 2008 .

[29]  Alfred Lell,et al.  Comparison of degradation mechanisms of blue‐violet laser diodes grown on SiC and GaN substrates , 2006 .

[30]  Ronald A. Arif,et al.  Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes , 2010, DRC 2010.

[31]  E. Schubert,et al.  Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop , 2008 .

[32]  Werner Wegscheider,et al.  Microscopic analysis of optical gain in InGaN/GaN quantum wells , 2006 .

[33]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[34]  Bernardo Kucinski 43 , 2014, Testament d'un patriote exécuté.

[35]  Seoung-Hwan Park,et al.  Theory of non-polar and semi-polar nitride semiconductor quantum-well structures , 2012 .

[36]  V. Haerle,et al.  High brightness LEDs for general lighting applications Using the new ThinGaN™‐Technology , 2004 .

[37]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[38]  K. Streubel,et al.  Luminescence properties of thick InGaN quantum‐wells , 2009 .

[39]  Paul Waide,et al.  The World's Appetite for Light: Empirical Data and Trends Spanning Three Centuries and Six Continents , 2010 .

[40]  T. Mukai,et al.  Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes. , 2007, Optics express.

[41]  Jonathan J. Wierer,et al.  Four-color laser white illuminant demonstrating high color-rendering quality. , 2011, Optics express.

[42]  J. Carlin,et al.  Blue laser diodes including lattice-matched Al 0.83 In 0.17 N bottom cladding layer , 2008 .

[43]  Takashi Mukai,et al.  High-Power Pure Blue InGaN Laser Diodes , 2009, IEICE Trans. Electron..

[44]  H. J. Unold,et al.  High-power VCSELs: single devices and densely packed 2-D-arrays , 1999 .

[45]  S. Denbaars,et al.  Influence of polarity on carrier transport in semipolar (2021¯) and (202¯1) multiple-quantum-well light-emitting diodes , 2012 .

[46]  H. Morkoç,et al.  Impact of active layer design on InGaN radiative recombination coefficient and LED performance , 2012 .

[47]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[48]  Michael Kneissl,et al.  Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells , 2011 .

[49]  P. Wisniewski,et al.  Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals , 2006 .

[50]  Hadis Morkoç,et al.  Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes , 2009, OPTO.

[51]  S. Lutgen,et al.  8 W single‐emitter InGaN laser in pulsed operation , 2009 .

[52]  S. Karpov,et al.  Assessment of various LED structure designs for high‐current operation , 2009 .

[53]  S. Lutgen,et al.  Antiguiding factor of GaN-based laser diodes from UV to green , 2010 .

[54]  S. Lutgen,et al.  Beam quality of blue InGaN laser for projection , 2008 .

[55]  C. Zah,et al.  Internal Optical Waveguide Loss and p-Type Absorption in Blue and Green InGaN Quantum Well Laser Diodes , 2010 .

[56]  Shuji Nakamura,et al.  Micro Cavity Effect in GaN-Based Light-Emitting Diodes Formed by Laser Lift-Off and Etch-Back Technique , 2004 .

[57]  Display Materials Division,et al.  Proceedings of the Symposium on Light Emitting Devices for Optoelectronic Applications and the Twenty-Eighth State-of-the-Art Program on Compound Semiconductors , 1998 .

[58]  Christian Kisielowski,et al.  Local indium segregation and bang gap variations in high efficiency green light emitting InGaN/GaN diodes , 2006 .

[59]  Daniel D. Koleske,et al.  GaN decomposition in H2 and N2 at MOVPE temperatures and pressures , 2001 .

[60]  T. Mukai,et al.  Inhomogeneously broadened optical gain spectra of InGaN quantum well laser diodes , 2008 .

[61]  S. Lutgen,et al.  On the importance of radiative and Auger losses in GaN-based quantum wells , 2008 .

[62]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[63]  Wolfgang G. Scheibenzuber,et al.  Recombination coefficients of GaN-based laser diodes , 2011 .

[64]  Masao Ikeda,et al.  High‐power pure blue laser diodes , 2007 .

[65]  A. Yamaguchi Anisotropic Optical Matrix Elements in Strained GaN Quantum Wells on Semipolar and Nonpolar Substrates , 2007 .

[66]  Yoshikazu Yamada,et al.  High-power InGaAs/AlGaAs laser diodes with decoupled confinement heterostructure , 1999, Photonics West.

[67]  D. Look,et al.  Metal Modulation Epitaxy Growth for Extremely High Hole Concentrations Above 10(19) Cm(-3) in GaN , 2008 .

[68]  Michael R. Krames,et al.  High-power phosphor-converted light-emitting diodes based on III-Nitrides , 2002 .

[69]  A. David,et al.  Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis , 2010 .

[70]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[71]  Martin Hÿtch,et al.  Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice , 2011 .

[72]  T. Mukai,et al.  White light emitting diodes with super-high luminous efficacy , 2010 .

[73]  G. Chen,et al.  Performance of high‐power III‐nitride light emitting diodes , 2008 .

[74]  A. Lell,et al.  Gradual facet degradation of (Al, In)GaN quantum well lasers , 2004 .

[75]  Shinichi Tanaka,et al.  High-Power, Low-Efficiency-Droop Semipolar (2021) Single-Quantum-Well Blue Light-Emitting Diodes , 2012 .

[76]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[77]  Jorg Hader,et al.  On the origin of IQE‐‘droop’ in InGaN LEDs , 2009 .

[78]  Larry A. Coldren,et al.  Effects of Si-doping in the barriers of InGaN multiquantum well purplish-blue laser diodes , 1998 .

[79]  Avram Bar-Cohen,et al.  Design and analysis of heat sinks , 1995 .

[80]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[81]  H. Amano,et al.  Thermal ionization energy of Si and Mg in AlGaN , 1998 .

[82]  E. Fred Schubert,et al.  On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[83]  W. W. Chow,et al.  Semiconductor-Laser Fundamentals: Physics of the Gain Materials , 1999 .

[84]  Calculation of quantum well laser gain spectra. , 1998, Optics express.

[85]  Mathew C. Schmidt,et al.  Improved electroluminescence on nonpolar m ‐plane InGaN/GaN quantum wells LEDs , 2007 .

[86]  T. Makino,et al.  Analytical formulas for the optical gain of quantum wells , 1996 .

[87]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[88]  E. Schubert,et al.  Efficiency droop in light‐emitting diodes: Challenges and countermeasures , 2013 .

[89]  N. Darghouth,et al.  Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008 , 2010 .

[90]  E. Kioupakis,et al.  Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .

[91]  Lei Deng,et al.  Performance characteristics of high-power light-emitting diodes , 2004, SPIE Optics + Photonics.

[92]  Aurelien J. F. David,et al.  Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes , 2010 .

[93]  Stephan W Koch,et al.  Microscopic theory of gain for an InGaN/AlGaN quantum well laser , 1997 .

[94]  M.H. Crawford,et al.  LEDs for Solid-State Lighting: Performance Challenges and Recent Advances , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[95]  S. Goto,et al.  Dislocation related issues in the degradation of GaN-based laser diodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[96]  Tobias Meyer,et al.  New developments in green LEDs , 2009 .

[97]  Naoki Kobayashi,et al.  Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence , 2018 .

[98]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[99]  Jianjun Zhu,et al.  Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green , 2009 .

[100]  S. Chuang,et al.  Electronic and Optical Properties of ${\rm a}$- and ${\rm m}$-Plane Wurtzite InGaN–GaN Quantum Wells , 2007, IEEE Journal of Quantum Electronics.

[101]  M. Kisin,et al.  Semi‐polar nitride surfaces and heterostructures , 2011 .

[102]  R. A. Abram,et al.  Auger recombination in a quantum well heterostructure , 1983 .

[103]  Po-Chieh Hung,et al.  Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression , 2013, Journal of Display Technology.

[104]  Aurelien J. F. David,et al.  Droop in III-nitrides: Comparison of bulk and injection contributions , 2010 .

[105]  J.Y. Tsao,et al.  Solid-state lighting: lamps, chips and materials for tomorrow , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[106]  Jeong-Sik Lee,et al.  Light Extraction Simulation of Surface-Textured Light-Emitting Diodes by Finite-Difference Time-Domain Method and Ray-Tracing Method , 2007 .

[107]  Andrew G. Glen,et al.  APPL , 2001 .

[108]  Michael R. Krames,et al.  Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2 , 2007 .

[109]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[110]  B. Ma,et al.  Lifetime enhancement of high-power light-emitting diodes using thermal paths in ceramic package , 2012 .

[111]  Adrian Avramescu,et al.  Investigation of long wavelength green InGaN lasers on c‐plane GaN up to 529 nm continuous wave operation , 2011 .

[112]  Mathew C. Schmidt,et al.  High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes , 2007 .

[113]  Anurag Tyagi,et al.  Bulk GaN based violet light-emitting diodes with high efficiency at very high current density , 2012 .

[114]  M. Henini,et al.  Physics of optoelectronic devices , 1997 .

[115]  Isamu Akasaki,et al.  P-TYPE CONDUCTION IN MG-DOPED GAN AND AL0.08GA0.92N GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1994 .

[116]  S. Lutgen,et al.  Waveguide design of green InGaN laser diodes , 2010 .

[117]  Galen Barbose Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009 , 2011 .

[118]  E. Fred Schubert,et al.  Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes , 2010 .

[119]  Chung-En Zah,et al.  Gallium Indium Nitride-Based Green Lasers , 2012, Journal of Lightwave Technology.

[120]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .

[121]  Jerry A. Simmons,et al.  Solid-State Lighting: An Integrated Human Factors, Technology, and Economic Perspective , 2010, Proceedings of the IEEE.

[122]  Peter Blood,et al.  Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480 nm , 2003, Applied Physics Letters.

[123]  D. H. Mash,et al.  Light-emitting diodes , 1977, Nature.

[124]  R. Lin,et al.  Improved Carrier Distributions by Varying Barrier Thickness for InGaN/GaN LEDs , 2013, Journal of Display Technology.

[125]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[126]  Michael R. Krames,et al.  Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes , 2008 .

[127]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[128]  William S. Wong,et al.  Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates , 2000 .

[129]  H. Ryu,et al.  Behaviors of Emission Wavelength Shift in AlInGaN-Based Green Laser Diodes , 2008, IEEE Electron Device Letters.

[130]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[131]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .