Phase-field simulations of Te-precipitate morphology and evolution kinetics in Te-rich CdTe crystals

Te precipitates are one of principal defects that form during cooling of melt-grown CdTe or CZT crystals when grown Te-rich. Many factors such as the kinetic properties of intrinsic point defects (vacancy, interstitial, and antisite defects); stresses associated with the lattice mismatch between precipitate and matrix; temperature gradients and extended defects (dislocations, twin and grain boundaries); non-stoichiometric composition; thermal treatment history all affect the formation and growth/dissolution of Te precipitates in CdTe. A good understanding of these effects on Te precipitate evolution kinetics is technically important in order to optimize material processing and obtain high-quality crystals. This research develops a phase-field model capable of investigating the evolution of coherent Te precipitates in a Te-rich CdTe crystal undergoing cooling from the melt. Cd vacancies and Te interstitials are assumed to be the dominant diffusing species in the system, which is in two-phase equilibrium (matrix CdTe and liquid Te inclusion) at high temperatures and three-phase equilibrium (matrix CdTe, Te precipitate, and void) at low temperatures. Using available thermodynamic and kinetic data from experimental phase diagrams and thermodynamic calculations, the effects of Te interstitial and Cd vacancy mobility, cooling rates and stresses on Te precipitate, and void evolution kinetics are investigated.

[1]  K. Benz,et al.  High temperature defect structure of Cd- and Te-rich CdTe , 2001 .

[2]  J. Bajaj,et al.  Characterization of Te precipitates in CdTe crystals , 1983 .

[3]  R. F. Brebrick,et al.  CdTe I: Solidus curve and composition-temperature-tellurium partial pressure data for Te-rich CdTe(s) from optical density measurements , 1996 .

[4]  W. Jie,et al.  Observation of nano-scale Te precipitates in cadmium zinc telluride with HRTEM , 2008 .

[5]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[6]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[7]  P. Rudolph Non‐stoichiometry related defects at the melt growth of semiconductor compound crystals – a review , 2003 .

[8]  T. Chart,et al.  The thermodynamics and phase diagrams of the Cd-Hg and Cd-Hg-Te systems , 1995 .

[9]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[10]  Fife,et al.  Higher-order phase field models and detailed anisotropy. , 1986, Physical review. B, Condensed matter.

[11]  Aleksey E. Bolotnikov,et al.  Cumulative effects of Te precipitates in CdZnTe radiation detectors , 2007 .

[12]  Yunzhi Wang,et al.  Shape evolution of a precipitate during strain-induced coarsening , 1991 .

[13]  C. Johnson,et al.  Recipe to minimize Te precipitation in CdTe and (Cd,Zn)Te crystals , 1992 .

[14]  K. Durose,et al.  Structural properties of crystals of CdTe grown from the vapour phase , 1985 .

[15]  M. Enomoto,et al.  Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM , 2007 .

[16]  J. Bean,et al.  Microscopic Defects and Infrared Absorption in Cadmium Telluride , 1975 .

[17]  P. M. Fochuk,et al.  The nature of point defects in CdTe , 2006 .

[18]  M. Suffczyński,et al.  Selection rules for the double space group of the beta-Wolfram structure , 1977 .

[19]  Heinrich F. Arlinghaus,et al.  Reduction of CdZnTe substrate defects and relation to epitaxial HgCdTe quality , 1996 .

[20]  C. Henager,et al.  Preferential orientation of Te particles in melt-grown CZT , 2009 .

[21]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[22]  T. Duffar,et al.  Bridgman growth without crucible contact using the dewetting phenomenon , 2000 .

[23]  P. Rudolph,et al.  Distribution and genesis of inclusions in CdTe and (Cd,Zn)Te single crystals grown by the Bridgman method and by the travelling heater method , 1995 .

[24]  S. Sivananthan,et al.  New development on the control of homoepitaxial and heteroepitaxial growth of CdTe and HgCdTe by MBE , 1991 .

[25]  M. Kasuga,et al.  Homo-epitaxial growth of CdTe by sublimation under low pressure , 1991 .

[26]  S. Sen,et al.  Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process☆ , 1988 .

[27]  W. A. Oates,et al.  Phase equilibria, defect chemistry and semiconducting properties of CdTe(s)—Thermodynamic modeling , 1998 .

[28]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[29]  Y. Tsuchiya,et al.  Thermodynamic properties of the selenium-tellurium system , 1982 .

[30]  R. Yadava,et al.  Theory of te precipitation and related effects in CdTe Crystals , 1992 .

[31]  Jacek A. Majewski,et al.  A novel method of crystal growth by physical vapour transport and its application to CdTe , 1992 .

[32]  Baroni,et al.  Nonlinear piezoelectricity in CdTe. , 1993, Physical review. B, Condensed matter.

[33]  Alberto M. Cuitiño,et al.  Phase field microelasticity theory and modeling of multiple dislocation dynamics , 2001 .

[34]  J. Garandet,et al.  Dewetting application to CdTe single crystal growth on earth , 2004 .

[35]  Michael Groza,et al.  Component Overpressure Growth and Characterization of High-Resistivity CdTe Crystals for Radiation Detectors , 2007 .

[36]  J. H. Greenberg,et al.  P-T-X phase equilibrium and vapor pressure scanning of non-stoichiometry in CdTe , 1996 .

[37]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[38]  P. M. Amirtharaj,et al.  Growth and characterization of Cd1−xZnxTe and Hg1−yZnyTe , 1988 .

[39]  D. G. Thomas,et al.  Elastic Moduli of Cadmium Telluride , 1962 .

[40]  Yael Nemirovsky,et al.  Study of the charge collection efficiency of CdZnTe radiation detectors , 1996 .

[41]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[42]  R. Feigelson,et al.  A study of the defect structures in CdTe crystals using synchrotron x‐ray topography , 1986 .

[43]  C. Martínez-Tomás,et al.  CdTe crystal growth process by the Bridgman method: numerical simulation , 2001 .

[44]  J. Chu,et al.  The effects of Te precipitation on IR transmittance and crystalline quality of as-grown CdZnTe crystals , 1999 .

[45]  O. Shimomura,et al.  Crystal Structure of the High-Pressure Phase of Tellurium , 1980 .

[46]  G. Roosen,et al.  DEWETTING AND STRUCTURAL QUALITY OF CdTe:Zn:V GROWN IN SPACE ☆ , 2001 .

[47]  P. Rudolph Fundamental studies on Bridgman growth of CdTe , 1994 .

[48]  J. Franc,et al.  Dynamics of Point Defects in Tellurium-Rich CdTe , 2007, IEEE Transactions on Nuclear Science.

[49]  R. Triboulet,et al.  Study of the effect of dislocations introduced by indentation on Cd(1 1 1) and Te(1 1 1) faces on the electrical and optical properties of CdTe , 2000 .