A new maximal inequality and invariance principle for stationary sequences

We derive a new maximal inequality for stationary sequences under a martingale-type condition introduced by Maxwell and Woodroofe [Ann. Probab. 28 (2000) 713-724]. Then, we apply it to establish the Donsker invariance principle for this class of stationary sequences. A Markov chain example is given in order to show the optimality of the conditions imposed.

[1]  M. Rosenblatt Central limit theorem for stationary processes , 1972 .

[2]  Martingale approximations for sums of stationary processes , 2004, math/0410160.

[3]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[4]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[5]  S. Janson,et al.  On moment conditions for normed sums of independent variables and martingale differences , 1985 .

[6]  Michael Lin,et al.  The central limit theorem for Markov chains started at a point , 2003 .

[7]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[8]  I. Ibragimov,et al.  A Note on the Central Limit Theorems for Dependent Random Variables , 1975 .

[9]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[10]  P. Halmos Lectures on ergodic theory , 1956 .

[11]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[12]  Carlangelo Liverani,et al.  Central Limit Theorem for Deterministic Systems , 1995 .

[13]  M. Peligrad Convergence of Stopped Sums of Weakly Dependent Random Variables , 1999 .

[14]  Stefano Isola,et al.  Renewal Sequences and Intermittency , 1999 .

[15]  Richard C. Bradley,et al.  On second-order properties of mixing random sequences and random elds , 1994 .

[16]  Magda Peligrad,et al.  CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES , 1997 .

[17]  Magda Peligrad,et al.  Invariance Principles for Mixing Sequences of Random Variables , 1982 .

[18]  Michael Woodroofe,et al.  Central limit theorems for additive functionals of Markov chains , 2000 .